线带 电解处码 担 10 10 10 10 10 10 10 10 10 10 10 10 10				
請使用學校所提供之試紙作答	1	沙羊田鹽等		不 想庙田 甘冲如亚 <i>作</i> 被
4		THE R. P. P. J. P. S. T. W.	•	171寸使用具他就最作答。

		,		
I. Match the following ter	ms with the descriptions	nelow I Worse 2 - store		
subtracted for each of a wro	ng match! [(20 points in total)	Scion (Noie: 2 points	each for a correctly an	swer, but 3 points will
A. gene pool. F. chromosomal mutations K. beterosis	B. gene frequencies G. gene mutations	C. population H. migration	D. Hardy-Weinberg	g principle – E. mutat I. founder eff
• . •	L. balanced polymorphism	M. random rating	N. genetic drift	and the second s
() 1. individuals of the same spece () 2. adaptive advantage of hetero () 3. mating with any other availal () 4. method of distributing allele () 5. rearrangements of chromosom () 6. effects of chance fluctuation () 7. tool for determining allelic from () 8. heritable gene change () 9. transfer of variations from on () 10. maintenance of equilibrium but the following statem () 11. The symbols Bb represent the female	ies who interbreed with each officzygote over homozygote ble mate in the population, determined a population of the mate in the population, determined a population of the pop	mined by chance ation the population 18 11 through 17 (2) rid male (Bb) was bred	points each, 14 points to a homozveous reces	siva famala
cross (C). testcross (D). multiple (III. Multiple Choice (2 points each,) 18. Color-blindness is a sex-linked vision (XCXc) marries a color-blind man XCXc. 19. What are the chances that this color-blind	that the male could form with reaction 25 times and had gotten had ecoin 25 times and had gotten had ecoin 25 times and had gotten had ecoin 25 times and had gotten had economically of getter broducing a sperm with the dominate between these two animals, the black females (C), all white makes gous individual is crossed with a gous individual is crossed with a ealieles 10 points in total) 12 recessive trait. The trait for nor had would the genotype for the couple will have a color-blind sor	espect to coat color is: (, eads every time, What is ing tails (D), more than nant gene (B) is: (A), 1/2 ratio of expected offsprales (D), 1/2 black, 1/2 homozygous recessive mal vision is dominant, e man be represented? (a)? (A), 1/4 (B), 1/2 (B)	s the probability that on the probability of getti 2 (B). 1/4 (C). 1 (ing with respect to coat 2 white , is termed a: (A). dihy: Suppose a woman hete A). XcY. (B). XcXc (C). all sons will be cold	ng tails (D). 0 color would be: brid cross (B) linkage for 有試題 rozygous for normal (C). color-blind (D). or-blind (D). no son
20. The genetic information is code he sequential arrangement of the four bas one of the above	e molecules (the T, C, T, and G	nar atternation of deoxyr molecules) (C), the on	ibose (sugar) and phosp der of the genes (D).	thate molecules. (B). all of the above. (E)

)22. That DNA is thought to be the genetic material is based upon (A), the phenomenon of bacterial transformation (B), the correlation The chromosme content of cells (C), the study of virus multiplication within bacteria. (D), all of the above (E), none of the above

21: A standard F2 phenotypic ratio resulting from a dihybrid cross where dominance is complete would be (A), 3:1 (B), 1:2:1 (C),

3:3:1 (D), 1:1 (E) none of the above

國立中央大學八十九學年度碩士斯研究生入學試題卷

V. Short answer of the following questions BREIFLY:

In mice the genotype y/y is gray, Y/y is yellow, and Y/Y dies as a small embryo. What offspring would be expected from a cross between a yellow and a gray? Between two yellows? In which cross would you expect the largest size of litter? (9 points)

In man the gene D is necessary for a normal ear cochlea and gene E is necessary for a normal auditory nerve. In the absence of either of these factors the individual is deaf. Show a) how two normal parents could produce a deaf child and, b) how two deaf parents could produce a normal child. (8 points)

Fill in the missing letters in the following: (13 points)

<u>T</u>	<u>G</u>	<u>A</u> .	 <u></u>		 		3	DNA
<u>u</u>	· — · · ·		 _ <u>C.</u> _	A	 - <u>-</u> -		-	m-RNA S-RNA coding sites
	X		 ے Y ﴿ــ		> z.			Amino Acids

) If TTCGCTTA is the sequence of bases in one strand of a section of a DNA molecule, (2 points each, 6 points in total)

- a) What will be the sequence of bases in a complementary strand of DNA formed from this?
- b) In a strand of messenger RNA formed from the original molecule?
- c) For how many amino acids does this sequence code?
- 5) How many different kinds of gametes can the following individuals produce?

(2 points each, 6 points in total)

- a) AABBFF
- b) AAWwCCFf
- c) AaBbGgHh
- 6) When a strain of genotype "A CNRX", where the gene order is unknown, was used as a source of DNA used to transform a strain of genotype "a c n r x", the following types were found: "A c n R x", "a c N r X", "A C n R x", & "A c n r X" in addition to those such as "C n r x" where only a single gene was transformed. What is the gene order? (4 points)
- 7) Assuming a 1.1 sex ratio, what is the probability that a family of 6 children will consist of (2 points each, 10 points in total)
- a) 3 boys and 3 girls? b) A boy, a girl, a boy, a girl, a boy, and a girl in this order? c) All girls?