國立中央大學九十二學年度碩士班考試入學招生試題卷

共2頁第1頁

系所別:

光電科學研究所

科目:

雷磁學

- 1. (a) Write down the differential form of Maxwell's equations (in terms of $\vec{E}, \vec{H}, \vec{B}$ and \vec{D} fields) and explain their physical meanings. (5%)
 - (b) S is an interface between two media, 1 and 2. The field vectors \vec{E} , \vec{H} , \vec{D} and \vec{B} (all are time-dependent quantities) at a point on one side of S are related to the field vectors at the neighboring point on the opposite side by boundary conditions. Derive these boundary conditions from Maxwell's equations. (Hint: Use divergence theorem and Stokes's theorem). (10%)
 - (c) Derive the continuity equation

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \vec{J} = 0$$

from Maxwell's equations and explain its meaning. Here ρ is the free charge density and \vec{J} is the free current density. (5%)

2. For a linear medium (i.e., ε and μ are independent of the field strength), derive

$$\frac{\partial U}{\partial t} + \nabla \cdot \vec{S} \approx -\vec{J} \cdot \vec{E}$$

and explain its meaning. (5%)

Here $U = \frac{1}{2}(\vec{E} \cdot \vec{D} + \vec{B} \cdot \vec{H})$ and $\vec{S} = \vec{E} \times \vec{H}$. (Hint: You can use the vector

identity
$$\nabla \cdot (\vec{E} \times \vec{H}) = \vec{H} \cdot (\nabla \times \vec{E}) - \vec{E} \cdot (\nabla \times \vec{H})$$
.

- 3. f is a scalar function and \ddot{A} is a vector field.
 - (a) Verify the vector identities. (5%)

$$\nabla \cdot (f\vec{A}) = \nabla f \cdot \vec{A} + f \nabla \cdot \vec{A}$$
$$\nabla \times (f\vec{A}) = \nabla f \times \vec{A} + f \nabla \times \vec{A}$$

(b) In spherical coordinate system the gradient of function f is written as

$$\nabla f = \hat{r} \frac{\partial f}{\partial r} + \hat{\theta} \alpha(r) \frac{\partial f}{\partial \theta} + \hat{\phi} \beta(r, \theta) \frac{\partial f}{\partial \phi} ,$$

where \hat{r} , $\hat{\theta}$ and $\hat{\phi}$ are the unit vectors along the directions of ∇r , $\nabla \theta$, and $\nabla \phi$, respectively. What is $\alpha(r)$? What

is
$$\beta(r,\theta)$$
? (5%)

4. Verify that $\psi(x,t) = f(x-ct) + g(x+ct)$ satisfies the 1D wave equation

$$\frac{\partial^2 \psi(x,t)}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 \psi(x,t)}{\partial t^2} = 0,$$

Here f and g are two arbitrary single variable functions. (5%)

- 5. What is Hall effect? (5%) What is its use? (5%)
- 6. Charge Q is uniformly distributed on a ring of radius R. This ring is placed on the x-y plane of the x-y-z coordinate system with its center coincide the origin of the coordinate system. A line charge, of length A and with a total charge Q, is situated on the z-axis from z=A to z=2A. Find the electric field intensity at the origin of the coordinate system. (8%)

系所別:

光電科學研究所

科目:

雷磁學

7. A grounded, infinite, cylindrical conductor is introduced into a previously uniform electric field with its axis perpendicular to \vec{E}_o . Find the potential everywhere outside the cylindrical conductor. You may take the electric field along the x-direction and let the axis of the cylindrical conductor be on the z-axis as shown in the figure below. (10%)

- 8. A dipole of moment \vec{p} is line up with the z-axis at the origin of coordinates. A second dipole of moment \vec{p} is centered at the point (R, 0, R) and is pointed toward the origin. Calculate the force on the second dipole. (10%)
- 9. Referring to the figure below, consider a plane wave incident on the boundary of two dielectrics (index of refraction n_1 and n_2 , permittivity ε_1 and ε_2 , relative permeability $\mu_{r_1} = \mu_{r_2} = 1$). Suppose that the \vec{E} vector of the wave is parallel to the plane of incidence. Find the Fresnel's equations for both the transmitted wave and the reflected wave. (10%)

10. Try to obtain the potential for any point within the two-dimensional "box" subject to the boundary conditions given in the figure. (12%)

(如有不夠用之變數或多數,請自行定義.)