毎題 20 分

- 1. Please describe the photoelectrical effect in detail and explain why this effect demonstrates the quantum nature of light?
- 2. Describe Bohr's postulate of the atom. From the postulates try to derive the energy level of the electron in a hydrogen atom.
- Calculate the de Broglie wavelength of a particle of charge e and rest mass mo after accelerated by a potential difference V. Treat it relativistically.
- 4. The wave function for a particle inside an infinite potential well V(x) is given by $\Phi(x) = A \exp[-bx^2 + ikx]$, where V(x) is

$$V(x) = \begin{cases} +\infty & x < -a/2 \\ 0 & -a/2 < x < a/2 \\ +\infty & x > a/2 \end{cases}$$

- (a) Find the normalization constant A.
- (b) Find the probability of the particle between x and x+dx.
- (c) Find the expectation value of its position x.
- A particle of total energy 9 V is incident from the -x axis on a potential given by

$$V(x) = \begin{cases} 8V & x < 0 \\ 0 & 0 < x < a \\ 5V & x > a \end{cases}$$

Find the probability that the particle will be transmitted through to the positive side of the x axis x>a.