國立中央大學95學年度碩士班考試入學試題卷 共2頁第/頁

所別:<u>統計研究所碩士班一般生</u>科目:<u>數理統計</u>學位在職生

Note: There could be more than one answer for each problem.

(1) (10%) Let X be a random variable with probability density function $f(x) = \beta \alpha^{\beta} / x^{\beta+1}$, $\alpha < x < \infty$, $\alpha, \beta > 0$. Denote the cdf of X by $F(x) = P(X \le x)$ and let U = F(X), V = 1 - F(X).

Which of the followings are true?

- (a) F(x) is strictly increasing and differentiable for all x, $\alpha < x < \infty$.
- (b) U and V have the same probability distribution.
- (c) $E[V] = \beta \alpha / (\beta 1)$.
- (d) $-\log(U)$ has an exponential distribution with mean 1.
- (e) U/V has a Cauchy distribution.
- (2) (10%) Which of the followings are true?
 - (a) The exponential random variable is the only one random variable having the "memoryless" property.
 - (b) Let X_1 and X_2 be independent exponential random variables, then $\min(X_1, X_2)$ is also an exponential random variable.
 - (c) Let X_1 and X_2 be independent exponential random variables with mean λ_1 and λ_2 respectively, then $X_1 + X_2$ is an exponential random variable with mean $\lambda_1 + \lambda_2$.
 - (e) Moments of all orders for the exponential random variables always exist.
 - (d) If X_1 and X_2 are two arbitrary random variables, then $Cov(X_1, X_2) = 0$ if and only if X_1 and X_2 are independent.
- (3) (15%) If X and Y are any two random variables, which of the followings are true?
 - (a) E[Y] = E[E(X | Y)]
 - (b) $Var(X) \ge Var(E[X | Y])$
 - (c) $[Cov(X,Y)]^2 \le Var(X)Var(Y)$
 - (d) If X and Y are independent, then g(X) and h(Y) are independent for any functions g and h.
 - (e) Let X and Y be iid from $N(\theta,1)$, then $E[(X_1 + X_2)/2 | X_1]$ is an unbiased estimator of θ .
- (4) (15%) Let $X_1, X_2, ..., X_n$ be a random sample from a $N(\mu, \sigma^2)$ distribution, and let $\overline{X} = (1/n) \sum_{i=1}^n X_i$ and $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \overline{X})^2$. Which of the followings are true?
 - (a) \overline{X} and S^2 are not independent.
 - (b) $(n-1)S^2/\sigma^2$ has a chi squared distribution with n degrees of freedom.
 - (c) When $n \to \infty$, the distribution of $\frac{\overline{X} \mu}{S/\sqrt{n}}$ converges to a standard normal distribution.
 - (d) The quantity $n(\overline{X} \mu)^2 / S^2$ has the F distribution with 1 and n-1 degrees of freedom.
 - (e) The quantity $\frac{S^2}{n(\overline{X}-\mu)^2}$ has the F distribution with n-1 and 1 degrees of freedom.

注:背面有試題

國立中央大學95學年度碩士班考試入學試題卷 # 2 頁 第 2 頁

所別:<u>統計研究所碩士班一般生</u>科目:<u>數理統計</u> 學位在職生

- (5) (15%) Let $X_1, ..., X_n$ be a random sample from a Bernoulli(p) distribution and let $\overline{X} = (1/n) \sum_{i=1}^{n} X_i$. Which of the followings are true?
 - (a) \overline{X} is a consistent statistic for p.
 - (b) $\sum_{i=1}^{n} X_{i}$ is a minimal sufficient statistic for p.
 - (c) $(\overline{X})^2$ is the maximum likelihood estimator for p^2 .
 - (d) $X_1(1-X_2)$ is an unbiased estimator for p(1-p).
 - (e) For any $i \neq j$, $X_i(1-X_j)$ is the UMVUE of p(1-p).
- (6) (15%) Let $X_1, ..., X_n$ be a random sample from $N(\mu, 1)$, μ is unknown. Consider a likelihood ratio test for $H_0: \mu = \mu_0$ vs $H_1: \mu \neq \mu_0$ that has a rejection region $\{\vec{x}: \lambda(\vec{x}) \leq c\}$, $0 \leq c \leq 1$. Which of the followings are true?
 - (a) The statistic $\lambda(\vec{x})$ can be defined as $\frac{L(\hat{\mu} \mid \vec{x})}{L(\mu_0 \mid \vec{x})}$, where L is the likelihood function and $\hat{\mu}$ is the maximum likelihood estimator of μ .
 - (b) According to Neyman-Pearson, this likelihood ratio test is also uniformly most powerful.
 - (c) If the level of this test is α , the rejection region can be written as $\{\vec{x}: \sqrt{n} \mid \vec{x} \mu_0 \mid \leq z_{\alpha/2}\}$, where $z_{\alpha/2}$ is such that $P(Z > z_{\alpha/2}) = \alpha/2$, Z is a standard normal random variable.
 - (d) $[\bar{x} z_{\alpha/3} / \sqrt{n}, \bar{x} + z_{2\alpha/3} / \sqrt{n}]$ is a 1α confidence interval for μ .
 - (e) Any $1-\alpha$ confidence intervals for μ must have the interval length at least $2z_{\alpha/2}/\sqrt{n}$.
- (7) (20%) Suppose that $X_1, ..., X_n$ is a random sample from $Uniform(0,\theta)$. In order to make inference about the unknown parameter θ , let's consider a decision rule which rejects some null hypothesis H_0 when $X_{(n)} \ge c$, where $X_{(n)} = \max(X_1, ..., X_n)$.
 - (a) What is the probability density function of $X_{(n)}$?
 - (b) Compute the power function for this hypothesis.
 - (c) Determine the rejection region (that is, find the value of c) of a level $\alpha = 0.05$ test for $H_0: \theta \le 1/2$ vs $H_1: \theta > 1/2$.
 - (d) Continue from part (c), can you reduce the Type I Error and Type II Error probabilities at the same time? If yes, what is your strategy?
 - (e) If the sample size n=2, the observed value $X_{(n)}=0.48$, what is the p-value? Based on the p-value, would you reject or accept H_0 ?