| Fig. 1. Let A, B, C be three measurable events in a probability space. Suppose that A and B are independent and P(A)=0.6, P(B)=0.7, P(C B)=0.2 and P(C AB)=0.1. Let A ² be the complement of A, Find (1) P(A B) (5%) (2) P(BC A) (5%) (3) P(C A C) (5%) (4) P(A^C B C) (5%) (5%) (1) Show that (Cov(X,Y)) ² ≤ Var(X) Var(Y) (5%) (2) Show that for arbitrary measurable events A ₁ , A ₂ ,, A _n in a probability space, the following inequality holds: P(A ₁ A ₂ A _n) ≥ 1 - \frac{1}{2} P(A_1^C). (5%) (2) Use (1) to prove the Chebyshev inequality. (5%) (3) Suppose that \(\frac{1}{2}\) for (and as a binomial distribution b(n,p) for n=1, 2 Show that S _d /n converges to p in probability as n→∞ by using the Chebyshev inequality. (5%) IV. If f and F be the pdf and cdf of an absolutely continuous distribution. For n≥2, define \(f_n(y_1, y_2,, y_n) = f(y_n) \) \frac{1}{11} \frac{1}{1} f(y_i)/(1-F(y_i)), y_1 \leq y_2 \leq \leq y_n \) \(= 0, \text{ otherwise.} \) (1) Suppose (1) Suppose (1) Suppose (1) Suppose (2) Determine the distribution of Y _n using the information in (1). (5%) (3) Show that Y _n is a symptotic normal and determine the norming constants. (5%) V. Let (X,Y) have the following joint pdf \(f(x,y) = a \) for OSySex1 or OSx≤1/2, x+1/2Sy≤1 \(= 0 \) otherwise. Find (1) a (5%) (2) Marginal pdf of Y (5%) (3) E[XY Y=1] (5%) (3) E[XY Y=1] (5%) (4) P(2X+Y \leq 3/2) (5%) (5%) (5%) (5%) | 國立中央大學八十五學年度碩士班研究 | 完生入學試題卷 | |-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Let A, B, C be three measurable events in a probability space. Suppose that A and B are independent and P(A)=0.6, P(B)=0.7, P(CIB)=0.2 and P(CIAB)=0.1. Let A^C be the complement of A. Find (1) P(A(B) (5%) (2) P(BCIA) (5%) (3) P(CIA^CB) (5%) (4) P(A^CBC) (5%) (3) P(CIA^CB) (5%) (4) P(A^CBC) (5%) (4) P(A^CBC) (5%) (5%) (2) Show that [Cov(X,Y)]² ≤ Var(X) Var(Y) (5%) (2) Show that for arbitrary measurable events A₁, A₂,, A_n in a probability space, the following inequality holds: | 所別:統計研究所 甲組 科目:機率論 | 共 <u>/</u> 頁 第 <u>/</u> 頁 | | (2) P(BCA) (5%) (3) P(CAPB) (5%) (4) P(APBC) (5%) (4) P(APBC) (5%) (5%) (4) P(APBC) (5%) (5%) (2) Show that [Cov(X,Y)]² ≤ Var(X) Var(Y) (5%) (2) Show that for arbitrary measurable events A₁, A₂,, A_n in a probability space, the following inequality holds: P(A₁A₂A_n) ≥ 1- ∑ P(A₁²). (5%) (5%) (111. (1) Let g(x) > 0 for x>0 be a monotonically increasing function. Suppose F[g(XI)] = M exists. Show that P(XI≥x) ≤ M/g(x) for all x>0. (5%) (2) Use (1) to prove the Chebyshev inequality. (5%) (3) Suppose that S_n follows a binomial distribution b(n,p) for n=1, 2, Show that S_n/n converges to p in probability as n→∞ by using the Chebyshev inequality. (5%) (3%) (4) If f and F be the pdf and cdf of an absolutely continuous distribution. For n≥2, define f_n(y₁, y₂,, y_n) = f(y_n) ∏ f₁(y₁)/11-F(y₁), y₁≤ y₂≤≤ y_n = 0, otherwise. (1) Suppose (1) Suppose (1) Suppose (2) Otherwise (3) On therwise (4) and y₁ y₂ y₂ y₃ are the n random variables with f_n as their joint pdf. Define W₁ y₁ y₁ y₁ y₁ y₂ y₂ y₃ y_n are independant. (2) Determine the distribution of Y_n using the information in (1). (3%) (3) Show that Y_n is asymptote normal and determine the norming constants. (3%) V. Let (X,Y) have the following joint pdf f(x,y) = a for 05y≤x≤1 or 05x≤1/2, x+1/2≤y≤1 = 0 otherwise. Find (1) a (5%) (2) Marginal pdf of Y (5%) (3) E[XY-y] (5%) (4) P(2X+Y≤3/2) (5%) (5%) | Let A, B, C be three measurable events in a probability space. Suppose that are independent and P(A)=0.6, P(B)=0.7, P(C B)=0.2 and P(C AB)=0.1. | A and B | | (3) P(CA^CB) (5%) (4) P(A^CBC) (5%) (4) P(A^CBC) (5%) (4) P(A^CBC) (5%) (5) Show that [Cov(X,Y]]² ≤ Var(X) Var(Y) (5%) (2) Show that for arbitrary measurable events A₁, A₂,, A_n in a probability space, the following inequality holds: P(A₁A₂A_n) ≥ 1· | - | (5%) | | (4) P(A°IBC) (5%) II. (1) Show that [Cov(X,Y)]² ≤ Var(X) Var(Y) (5%) (2) Show that for arbitrary measurable events A₁, A₂,, A_n in a probability space, the following inequality holds: P(A₁A₂A_n) ≥ 1. ∑ P(A₁^C). (5%) III. (1) Let g(x) > 0 for x>0 be a monotonically increasing function. Suppose F[g(XI)] = M exists. Show that P(IX Ex) ≤ M/g(x) for all x>0. (5%) (2) Use (1) to prove the Chebyshev inequality. (5%) (3) Suppose that S_n follows a binomial distribution b(n,p) for n=1, 2, Show that S_n fo converges to p in probability as n→∞ by using the Chebyshev inequality. (5%) IV. If f and F be the pdf and cdf of an absolutely continuous distribution. For n≥2, define f_n(y₁, y₂,, y_n) = f(y_n) ∏ f(y₁)/(1-F(y₁) , y₁≤ y₂≤≤ y_n = 0, otherwise. (I) Suppose f(y) = e^y, y≥0 = 0, otherwise. (I) Suppose and Y₁, Y₂,, Y_n are the n random variables with f_n as their joint pdf. Define W₁ = Y₁ · Y₁, 1; 1, 2,, n, with Y₀ = 0. Determine whether W₁, W₂,, W_n are independant. (10%) (2) Determine the distribution of Y_n using the information in (1). (5%) (3) Show that Y_n is asymptotic normal and determine the norming constants. (5%) V. Let (X,Y) have the following joint pdf f(x,y) = a for 0≤y≤x≤1 or 0≤x≤1/2, x+1/2≤y≤1 = 0 otherwise. Find (1) a (5%) (2) Marginal pdf of Y (5%) (3) E[XIY=y] (5%) (4) P(2X+Y≤3/2) (5%) (5%) (5%) (2) Var(X) (5%) | (2) P(BCIA) | (5%) | | II. (1) Show that [Cov(X,Y)]² ≤ Var(X) Var(Y) (2) Show that for arbitrary measurable events A₁, A₂,, A_n in a probability space, the following inequality holds: P(A₁A₂A_n) ≥ 1 · [| (3) P(CIA ^c B) | (5%) | | (2) Show that for arbitrary measurable events A₁, A₂,, A_n in a probability space, the following inequality holds: P(A₁A₂A_n) ≥ 1 · ∑ P(A₁^C), (5%) III. (1) Let g(x) >0 for x>0 be a monotonically increasing function. Suppose F[g(XI)] = M exists. Show that P(IX[≥x) ≤ M/g(x) for all x>0. (5%) (2) Use (1) to prove the Chebyshev inequality. (5%) (3) Suppose that S_n follows a binomial distribution b(n,p) for n=1, 2, Show that S_n fo converges to p in probability as n→∞ by using the Chebyshev inequality. (5%) IV. If f and F be the pdf and cdf of an absolutely continuous distribution. For n≥2, define f_n(y₁, y₂,, y_n) = f(y_n) ∏ f(y₁)/[1-F(y₁)], y₁≤ y₂≤≤ y_n = 0, otherwise. (1) Suppose f(y) = e^{-y}, y≥0 = 0, otherwise and Y₁, Y₂,, Y_n are the n random variables with f_n as their joint pdf. Define W₁ = Y₁ · Y₁, y₁ · y₁ · y₁, x_n, with Y₀ = 0. Determine whether W₁, W₂,, W_n are independant. (10%) (2) Determine the distribution of Y_n using the information in (1). (5%) (3) Show that Y_n is asymptotic normal and determine the norming constants. (5%) V. Let (X,Y) have the following joint pdf f(x,y) = a for 0 Sy≤≤1/2, x+1/2≤y≤1 = 0 otherwise. Find (1) a (5%) (2) Marginal pdf of Y (5%) (3) E[XY=y] (5%) (4) P(2X+Y≤3/2) (5%) (5%) (5%) (7) Let X have a pdf f(x) which is a mixture of two pdfs f₁ and f₂ as follows: f(x) = (1-e) f₁(x) + e f₂(x), 0-e<1. Suppose now f₁(x) is the pdf of a normal distribution with mean µ₁ and variance of, i=1, 2. Find (1) E[X] (5%) (2) Var(X) | (4) P(A ^C IBC) | (5%) | | III. (1) Let g(x)>0 for x>0 be a monotonically increasing function. Suppose F[g(XI)] = M exists. Show that P(XI≥x) ≤ M/g(x) for all x>0. (5%) (2) Use (1) to prove the Chebyshev inequality. (5%) (3) Suppose that S_n follows a binomial distribution b(n,p) for n=1, 2, Show that S_n/n converges to p in probability as n→∞ by using the Chebyshev inequality. (5%) IV. If f and F be the pdf and cdf of an absolutely continuous distribution. For n≥2, define f_n(y₁, y₂,, y_n) = f(y_n) ∏_{i=1} f(y_i)/1.F(y_i)], y₁≤ y₂≤≤ y_n = 0, otherwise. (1) Suppose f(y) = c^{-y}, y≥0 = 0, otherwise. (1) Suppose f(y) = c^{-y}, y≥0 = 0, otherwise and Y₁, Y₂,, Y_n are the n random variables with f_n as their joint pdf. Define W_i = Y_i · Y_{i-1}, i=1, 2,, n, with Y₀ = 0. Determine whether W₁, W₂,, W_n are independant. (10%) (2) Determine the distribution of Y_n using the information in (1). (5%) (3) Show that Y_n is asymptotic normal and determine the norming constants. (5%) V. Let (X,Y) have the following joint pdf f(x,y) as for 0≤y≤x≤1 or 0≤x≤1/2, x+1/2≤y≤1 = 0 otherwise. Find (1) a (5%) (2) Marginal pdf of Y (5%) (3) E[XIY=y] (5%) (4) P(2X+Y≤3/2) (5%) (5%) (7) Let X have a pdf f(x) which is a mixture of two pdfs f₁ and f₂ as follows: f(x) = (1-e) f₁(x) + e f₂(x), 0<e<1.< li=""> Suppose now f₁(x) is the pdf of a normal distribution with mean μ₁ and variance σ², i=1, 2. Find (1) E[X] (5%) (2) Var(X) </e<1.<> | (2) Show that for arbitrary measurable events A ₁ , A ₂ ,, A _n in a probabilithe following inequality holds: | • • | | M exists. Show that P(X ≥x) ≤ M/g(x) for all x>0. (5%) (2) Use (1) to prove the Chebyshev inequality. (5%) (3) Suppose that S_n follows a binomial distribution b(n,p) for n=1, 2, Show that S_n/n converges to p in probability as n→∞ by using the Chebyshev inequality. (5%) IV. If f and F be the pdf and cdf of an absolutely continuous distribution. For n≥2, define f₀(y₁, y₂,, y_n) = f(y_n) ∫ ∫ ∫ ∫ ∫ ∫ (y₁)(1 · F(y₁)), y₁ ≤ y₂≤≤ y_n = 0, otherwise. (1) Suppose f(y) = c^{-y}, y≥0 = 0, otherwise and Y₁, Y₂,, Y_n are the n random variables with f_n as their joint pdf. Define W₁ = Y₁ · Y₁₋₁, i=1, 2,, n, with Y₀ = 0. Determine whether W₁, W₂,, W_n are independant. (10%) (2) Determine the distribution of Y_n using the information in (1). (5%) (3) Show that Y_n is asymptotic normal and determine the norming constants. (5%) V. Let (X,Y) have the following joint pdf f(x,y) = a for 0sy≤x≤1 or 0sx≤1/2, x+1/2≤y≤1 = 0 otherwise. Find (1) a (5%) (3) E X1Y=y (5%) (4) P(2X+Y≤3/2) (5%) VI. Let X have a pdf f(x) which is a mixture of two pdfs f₁ and f₂ as follows: f(x) = (1-e) f₁(x) + e f₂(x), 0<e<1.< li=""> Suppose now f₁(x) is the pdf of a normal distribution with mean μ₁ and variance σ²/₁, i=1, 2. Find (1) E X (5%) (2) Var(X) </e<1.<> | $P(A_1A_2A_n) \ge 1 - \sum_{i=1}^{n} P(A_i^c).$ | (5%) | | M exists. Show that P(X ≥x) ≤ M/g(x) for all x>0. (5%) (2) Use (1) to prove the Chebyshev inequality. (5%) (3) Suppose that S_n follows a binomial distribution b(n,p) for n=1, 2, Show that S_n/n converges to p in probability as n→∞ by using the Chebyshev inequality. (5%) IV. If f and F be the pdf and cdf of an absolutely continuous distribution. For n≥2, define f₀(y₁, y₂,, y_n) = f(y_n) ∫ ∫ ∫ ∫ ∫ ∫ (y₁)(1 · F(y₁)), y₁ ≤ y₂≤≤ y_n = 0, otherwise. (1) Suppose f(y) = c^{-y}, y≥0 = 0, otherwise and Y₁, Y₂,, Y_n are the n random variables with f_n as their joint pdf. Define W₁ = Y₁ · Y₁₋₁, i=1, 2,, n, with Y₀ = 0. Determine whether W₁, W₂,, W_n are independant. (10%) (2) Determine the distribution of Y_n using the information in (1). (5%) (3) Show that Y_n is asymptotic normal and determine the norming constants. (5%) V. Let (X,Y) have the following joint pdf f(x,y) = a for 0sy≤x≤1 or 0sx≤1/2, x+1/2≤y≤1 = 0 otherwise. Find (1) a (5%) (3) E X1Y=y (5%) (4) P(2X+Y≤3/2) (5%) VI. Let X have a pdf f(x) which is a mixture of two pdfs f₁ and f₂ as follows: f(x) = (1-e) f₁(x) + e f₂(x), 0<e<1.< li=""> Suppose now f₁(x) is the pdf of a normal distribution with mean μ₁ and variance σ²/₁, i=1, 2. Find (1) E X (5%) (2) Var(X) </e<1.<> | III. (1) Let $g(x) > 0$ for $x > 0$ be a monotonically increasing function. Suppose F | $\mathbb{E}[g(X)] =$ | | (3) Suppose that S_n follows a binomial distribution b(n,p) for n=1, 2, Show that S_n/n converges to p in probability as n→∞ by using the Chebyshev inequality. (5%) IV. If f and F be the pdf and cdf of an absolutely continuous distribution. For n≥2, define f_n(y₁, y₂,, y_n) = f(y_n) ∏ f(y_i)/[1-F(y_i)], y₁≤ y₂≤≤ y_n = 0, otherwise. (1) Suppose f(y) = e^{-y}, y≥0 = 0, otherwise and Y₁, Y₂,, Y_n are the n random variables with f_n as their joint pdf. Define W_i = Y_i - Y_{i-1}, i=1, 2,, n, with Y₀ = 0. Determine whether W₁, W₂,, W_n are independant. (10%) (2) Determine the distribution of Y_n using the information in (1). (5%) (3) Show that Y_n is asymptotic normal and determine the norming constants. (5%) V. Let (X,Y) have the following joint pdf f(x,y) = a for 0≤y≤x≤1 or 0≤x≤1/2, x+1/2≤y≤1 = 0 otherwise. Find (1) a (5%) (3) E[X1Y=y] (5%) (4) P(2X+Y≤3/2) (5%) VI. Let X have a pdf f(x) which is a mixture of two pdfs f₁ and f₂ as follows: f(x) = (1-e) f₁(x) + ε f₂(x), 0<ε<1. Suppose now f₁(x) is the pdf of a normal distribution with mean μ₁ and variance σ²₁, i=1, 2. Find (1) E[X] (5%) (2) Var(X) | - | | | Show that S_n/n converges to p in probability as $n \to \infty$ by using the Chebyshev inequality. (5%) IV. If f and F be the pdf and cdf of an absolutely continuous distribution. For $n \ge 2$, define $f_n(y_1, y_2,, y_n) = f(y_n) \prod_{i=1}^{n-1} f(y_i)/[1 \cdot F(y_i)], y_1 \le y_2 \le \le y_n = 0$, otherwise. (1) Suppose $f(y) = e^{-y}, y \ge 0$ $= 0, \text{ otherwise}$ and $Y_1, Y_2,, Y_n$ are the n random variables with f_n as their joint pdf . Define $W_i = Y_i \cdot Y_{i-1}, i=1, 2,, n$, with $Y_0 = 0$. Determine whether $W_1, W_2,, W_n$ are independant. (10%) (2) Determine the distribution of Y_n using the information in (1). (5%) (3) Show that Y_n is asymptotic normal and determine the norming constants. (5%) V. Let (X,Y) have the following joint pdf $f(x,y) = a \text{ for } 0 \le y \le x \le 1 \text{ or } 0 \le x \le 1/2, x+1/2 \le y \le 1$ $= 0 \text{ otherwise}.$ Find (1) a (5%) (2) Marginal pdf of Y (5%) (3) $E[XY=y]$ (5%) (4) $P(2X+Y \le 3/2)$ (5%) VI. Let X have a pdf $f(x)$ which is a mixture of two pdf s f_1 and f_2 as follows: $f(x) = (1 \cdot \epsilon) f_1(x) + \epsilon f_2(x), 0 \cdot \epsilon \le 1.$ Suppose now $f_1(x)$ is the pdf of a normal distribution with mean μ_1 and variance σ_1^2 , $i=1,2$. Find (1) $E[X]$ (5%) | (2) Use (1) to prove the Chebyshev inequality. | (5%) | | inequality. (5%) IV. If f and F be the pdf and cdf of an absolutely continuous distribution. For $n\geq 2$, define $f_n(y_1, y_2,, y_n) = f(y_n) \prod_{i=1}^{n-1} f(y_i)/[1-F(y_i)], y_1 \leq y_2 \leq \leq y_n$ $= 0, \text{ otherwise.}$ (1) Suppose $f(y) = e^{-y}, y\geq 0$ $= 0, \text{ otherwise}$ and $Y_1, Y_2,, Y_n$ are the n random variables with f_n as their joint pdf. Define $W_i = Y_i - Y_{i-1}$, $i=1, 2,, n$, with $Y_0 = 0$. Determine whether $W_1, W_2,, W_n$ are independant. (10%) (2) Determine the distribution of Y_n using the information in (1). (5%) (3) Show that Y_n is asymptotic normal and determine the norming constants. (5%) V. Let (X,Y) have the following joint pdf $f(x,y) = a \text{ for } 0\leq y\leq x\leq 1 \text{ or } 0\leq x\leq 1/2, x+1/2\leq y\leq 1$ $= 0 \text{ otherwise.}$ Find (1) a (5%) (3) $E[XY=y]$ (5%) (4) $P(2X+Y\leq 3/2)$ (5%) (5%) VI. Let X have a pdf $f(x)$ which is a mixture of two pdfs f_1 and f_2 as follows: $f(x) = (1-e) f_1(x) + \epsilon f_2(x), 0< \epsilon < 1.$ Suppose now $f_1(x)$ is the pdf of a normal distribution with mean μ_i and variance σ_i^2 , $i=1, 2$. Find (1) $E[X]$ (5%) (2) $Var(X)$ (5%) | - | | | IV. If f and F be the pdf and cdf of an absolutely continuous distribution. For $n\geq 2$, define $f_n(y_1, y_2,, y_n) = f(y_n) \prod_{i=1}^{n-1} f(y_i)/[1-F(y_i)], y_1\leq y_2\leq\leq y_n$ $= 0, \text{ otherwise.}$ (1) Suppose $f(y) = e^{-y}, y\geq 0$ $= 0, \text{ otherwise}$ and $Y_1, Y_2,, Y_n$ are the n random variables with f_n as their joint pdf. Define $W_i = Y_i - Y_{i-1}$, $i=1, 2,, n$, with $Y_0 = 0$. Determine whether $W_1, W_2,, W_n$ are independant. (10%) (2) Determine the distribution of Y_n using the information in (1). (5%) (3) Show that Y_n is asymptotic normal and determine the norming constants. (5%) V. Let (X,Y) have the following joint pdf $f(x,y) = a \text{ for } 0\leq y\leq x\leq 1 \text{ or } 0\leq x\leq 1/2, x+1/2\leq y\leq 1$ $= 0 \text{ otherwise.}$ Find (1) a (5%) (2) Marginal pdf of Y (5%) (3) $E[XY=y]$ (5%) (4) $P(2X+Y\leq 3/2)$ (5%) (5%) VI. Let X have a pdf $f(x)$ which is a mixture of two pdfs f_1 and f_2 as follows: $f(x) = (1-x) f_1(x) + \epsilon f_2(x), 0< \epsilon < 1.$ Suppose now $f_1(x)$ is the pdf of a normal distribution with mean μ_i and variance σ_i^2 , $i=1, 2$. Find (1) $E[X]$ (5%) (2) $Var(X)$ (5%) | • | | | $f_n(y_1, y_2,, y_n) = f(y_n) \prod_{i=1}^{n-1} f(y_i)/[1-F(y_i)], y_1 \le y_2 \le \le y_n$ $= 0, \text{ otherwise.}$ (1) Suppose $f(y) = e^{-y}, y \ge 0$ $= 0, \text{ otherwise}$ and $Y_1, Y_2,, Y_n$ are the n random variables with f_n as their joint pdf. Define $W_i = Y_i - Y_{i-1}, \text{ i=1, 2,, n, with } Y_0 = 0. \text{ Determine whether } W_1, W_2,, W_n$ are independant. (2) Determine the distribution of Y_n using the information in (1). (3) Show that Y_n is asymptotic normal and determine the norming constants. (5%) V. Let (X,Y) have the following joint pdf $f(x,y) = a \text{ for } 0 \le y \le x \le 1 \text{ or } 0 \le x \le 1/2, x+1/2 \le y \le 1$ $= 0 \text{ otherwise.}$ Find (1) a (2) Marginal pdf of Y (5%) (3) $E[XY = y]$ (5%) (4) $P(2X + Y \le 3/2)$ (5%) (5%) VI. Let X have a pdf $f(x)$ which is a mixture of two pdfs f_1 and f_2 as follows: $f(x) = (1 - \varepsilon) f_1(x) + \varepsilon f_2(x), 0 < \varepsilon < 1.$ Suppose now $f_1(x)$ is the pdf of a normal distribution with mean μ_i and variance σ_i^2 , i=1, 2. Find (1) $E[X]$ (5%) (2) $Var(X)$ | mequality. | (5%) | | $f(y) = e^{-y}, y \ge 0$ $= 0, \text{ otherwise.}$ $f(y) = e^{-y}, y \ge 0$ $= 0, \text{ otherwise}$ and $Y_1, Y_2,, Y_n$ are the n random variables with f_n as their joint pdf. Define $W_i = Y_i - Y_{i-1}, i=1, 2,, n$, with $Y_0 = 0$. Determine whether $W_1, W_2,, W_n$ are independant. (10%) (2) Determine the distribution of Y_n using the information in (1). (5%) (3) Show that Y_n is asymptotic normal and determine the norming constants. (5%) V. Let (X,Y) have the following joint pdf $f(x,y) = a \text{ for } 0 \le y \le x \le 1 \text{ or } 0 \le x \le 1/2, x+1/2 \le y \le 1$ $= 0 \text{ otherwise.}$ Find (1) a (5%) (2) Marginal pdf of Y (5%) (3) $E[XY = y]$ (5%) (4) $P(2X + Y \le 3/2)$ (5%) VI. Let X have a pdf $f(x)$ which is a mixture of two pdfs f_1 and f_2 as follows: $f(x) = (1 - \varepsilon) f_1(x) + \varepsilon f_2(x), 0 < \varepsilon < 1.$ Suppose now $f_1(x)$ is the pdf of a normal distribution with mean μ_1 and variance σ_1^2 , $i=1,2$. Find (1) $E[X]$ (5%) (2) $Var(X)$ (5%) | IV. If f and F be the pdf and cdf of an absolutely continuous distribution. For na | ≥2, define | | (1) Suppose $f(y) = e^{-y}, y \ge 0$ $= 0, \text{ otherwise}$ and $Y_1, Y_2,, Y_n$ are the n random variables with f_n as their joint pdf. Define $W_i = Y_i - Y_{i-1}, i = 1, 2,, n, \text{ with } Y_0 = 0. \text{ Determine whether } W_1, W_2,, W_n$ are independant. (2) Determine the distribution of Y_n using the information in (1). (3) Show that Y_n is asymptotic normal and determine the norming constants. (5%) V. Let (X,Y) have the following joint pdf $f(x,y) = a \text{ for } 0 \le y \le x \le 1 \text{ or } 0 \le x \le 1/2, x + 1/2 \le y \le 1$ $= 0 \text{ otherwise.}$ Find (1) a (5%) (2) Marginal pdf of Y (5%) (3) $E[XY = y]$ (5%) (4) $P(2X + Y \le 3/2)$ (5%) VI. Let X have a pdf $f(x)$ which is a mixture of two pdfs f_1 and f_2 as follows: $f(x) = (1 - e) f_1(x) + e f_2(x), 0 < e < 1.$ Suppose now $f_1(x)$ is the pdf of a normal distribution with mean μ_1 and variance $\sigma_i^2, i = 1, 2. \text{ Find}$ (1) $E[X]$ (5%) (2) $Var(X)$ (5%) | | | | $f(y) = e^{-y}, y \ge 0$ $= 0, \text{ otherwise}$ and $Y_1, Y_2,, Y_n$ are the n random variables with f_n as their joint pdf. Define $W_i = Y_i - Y_{i-1}, i = 1, 2,, n, \text{ with } Y_0 = 0. \text{ Determine whether } W_1, W_2,, W_n$ are independant. (10%) (2) Determine the distribution of Y_n using the information in (1). (5%) (3) Show that Y_n is asymptotic normal and determine the norming constants. (5%) V. Let (X,Y) have the following joint pdf $f(x,y) = a \text{ for } 0 \le y \le x \le 1 \text{ or } 0 \le x \le 1/2, x + 1/2 \le y \le 1$ $= 0 \text{ otherwise.}$ Find (1) a (5%) (2) Marginal pdf of Y (5%) (3) $E[XY = y]$ (5%) (4) $P(2X + Y \le 3/2)$ (5%) (5%) VI. Let X have a pdf $f(x)$ which is a mixture of two pdfs f_1 and f_2 as follows: $f(x) = (1 - \varepsilon) f_1(x) + \varepsilon f_2(x), 0 < \varepsilon < 1.$ Suppose now $f_1(x)$ is the pdf of a normal distribution with mean μ_1 and variance σ_1^2 , $i = 1, 2$. Find (1) $E[X]$ (5%) (2) $Var(X)$ (5%) | | | | and $Y_1, Y_2,, Y_n$ are the n random variables with f_n as their joint pdf. Define $W_i = Y_i \cdot Y_{i-1}$, $i=1, 2,, n$, with $Y_0 = 0$. Determine whether $W_1, W_2,, W_n$ are independant. (10%) (2) Determine the distribution of Y_n using the information in (1). (5%) (3) Show that Y_n is asymptotic normal and determine the norming constants. (5%) V. Let (X,Y) have the following joint pdf $f(x,y) = a \text{ for } 0 \le y \le x \le 1 \text{ or } 0 \le x \le 1/2, x+1/2 \le y \le 1$ $= 0 \text{ otherwise.}$ Find (1) a (5%) (2) Marginal pdf of Y (5%) (3) $E[XY=y]$ (5%) (4) $P(2X+Y \le 3/2)$ (5%) VI. Let X have a pdf $f(x)$ which is a mixture of two pdfs f_1 and f_2 as follows: $f(x) = (1-\varepsilon) f_1(x) + \varepsilon f_2(x), \ 0 < \varepsilon < 1.$ Suppose now $f_1(x)$ is the pdf of a normal distribution with mean μ_1 and variance σ_1^2 , $i=1, 2$. Find (1) $E[X]$ (5%) (2) $Var(X)$ (5%) | | | | $W_i = Y_i - Y_{i-1}, i=1, 2,, n, \text{ with } Y_0 = 0. \text{ Determine whether } W_1, W_2,, W_n$ are independant. (10%) (2) Determine the distribution of Y_n using the information in (1). (5%) (3) Show that Y_n is asymptotic normal and determine the norming constants. (5%) V. Let (X,Y) have the following joint pdf $f(x,y) = a \text{ for } 0 \le y \le x \le 1 \text{ or } 0 \le x \le 1/2, x+1/2 \le y \le 1$ $= 0 \text{ otherwise.}$ Find (1) a (5%) (2) Marginal pdf of Y (5%) (3) $E[XY=y]$ (5%) (4) $P(2X+Y \le 3/2)$ (5%) (5%) VI. Let X have a pdf $f(x)$ which is a mixture of two pdfs f_1 and f_2 as follows: $f(x) = (1-\varepsilon) f_1(x) + \varepsilon f_2(x), 0 < \varepsilon < 1.$ Suppose now $f_i(x)$ is the pdf of a normal distribution with mean μ_i and variance σ_i^2 , $i=1, 2$. Find (1) $E[X]$ (5%) (2) $Var(X)$ (5%) | = 0, otherwise | | | are independant. (10%) (2) Determine the distribution of Y_n using the information in (1). (5%) (3) Show that Y_n is asymptotic normal and determine the norming constants. (5%) V. Let (X,Y) have the following joint pdf $f(x,y) = a \text{ for } 0 \le y \le x \le 1 \text{ or } 0 \le x \le 1/2, x+1/2 \le y \le 1$ $= 0 \text{ otherwise.}$ Find (1) a (5%) (2) Marginal pdf of Y (5%) (3) $E[XY=y]$ (5%) (4) $P(2X+Y \le 3/2)$ (5%) VI. Let X have a pdf $f(x)$ which is a mixture of two pdfs f_1 and f_2 as follows: $f(x) = (1-\varepsilon) f_1(x) + \varepsilon f_2(x), 0 < \varepsilon < 1.$ Suppose now $f_1(x)$ is the pdf of a normal distribution with mean μ_1 and variance σ_1^2 , $i=1, 2$. Find (1) $E[X]$ (5%) (2) $Var(X)$ (5%) | | | | (2) Determine the distribution of Y_n using the information in (1). (5%) (3) Show that Y_n is asymptotic normal and determine the norming constants. (5%) V. Let (X,Y) have the following joint pdf f(x,y) = a for 0≤y≤x≤1 or 0≤x≤1/2, x+1/2≤y≤1 = 0 otherwise. Find (1) a (5%) (2) Marginal pdf of Y (5%) (3) E[XiY=y] (5%) (4) P(2X+Y≤3/2) (5%) VI. Let X have a pdf f(x) which is a mixture of two pdfs f₁ and f₂ as follows: f(x) = (1-ε) f₁(x) + ε f₂(x), 0<ε<1. Suppose now f₁(x) is the pdf of a normal distribution with mean μ₁ and variance σ²₁, i=1, 2. Find (1) E[X] (5%) (2) Var(X) (5%) | $W_i = Y_{i-1}, i=1, 2,, n, \text{ with } Y_0 = 0. \text{ Determine whether } W_1, W_2$ | ₂ ,, W _n | | (3) Show that Y_n is asymptotic normal and determine the norming constants. (5%) V. Let (X,Y) have the following joint pdf $f(x,y) = a \text{ for } 0 \le y \le x \le 1 \text{ or } 0 \le x \le 1/2, x+1/2 \le y \le 1$ $= 0 \text{ otherwise.}$ Find (1) a (5%) (2) Marginal pdf of Y (5%) (3) $E[XY = y]$ (5%) (4) $P(2X + Y \le 3/2)$ (5%) VI. Let X have a pdf $f(x)$ which is a mixture of two pdfs f_1 and f_2 as follows: $f(x) = (1 - \epsilon) f_1(x) + \epsilon f_2(x), 0 < \epsilon < 1.$ Suppose now $f_1(x)$ is the pdf of a normal distribution with mean μ_1 and variance σ_1^2 , $i = 1, 2$. Find (1) $E[X]$ (5%) (2) $Var(X)$ (5%) | · · · · · · · · · · · · · · · · · · · | The state of s | | V. Let (X,Y) have the following joint pdf $f(x,y) = a \text{ for } 0 \le y \le x \le 1 \text{ or } 0 \le x \le 1/2, x+1/2 \le y \le 1$ $= 0 \text{ otherwise.}$ Find (1) a (5%) (2) Marginal pdf of Y (5%) (3) $E[XY=y]$ (5%) (4) $P(2X+Y \le 3/2)$ (5%) (5%) VI. Let X have a pdf $f(x)$ which is a mixture of two pdfs f_1 and f_2 as follows: $f(x) = (1-\varepsilon) f_1(x) + \varepsilon f_2(x), 0 < \varepsilon < 1.$ Suppose now $f_i(x)$ is the pdf of a normal distribution with mean μ_i and variance σ_i^2 , $i=1, 2$. Find (1) $E[X]$ (5%) (2) $Var(X)$ (5%) | | • | | $f(x,y) = a \text{ for } 0 \le y \le x \le 1 \text{ or } 0 \le x \le 1/2, x+1/2 \le y \le 1$ $= 0 \text{ otherwise.}$ Find (1) a (5%) (2) Marginal pdf of Y (5%) (3) $E[X!Y=y]$ (5%) (4) $P(2X+Y \le 3/2)$ (5%) (5%) VI. Let X have a pdf $f(x)$ which is a mixture of two pdfs f_1 and f_2 as follows: $f(x) = (1-\varepsilon) f_1(x) + \varepsilon f_2(x), \ 0 < \varepsilon < 1.$ Suppose now $f_i(x)$ is the pdf of a normal distribution with mean μ_i and variance σ_i^2 , $i=1, 2$. Find (1) $E[X]$ (5%) (2) $Var(X)$ (5%) | (3) Show that T_n is asymptotic normal and determine the norming constants | s. (5%) | | Find (1) a (5%) (2) Marginal pdf of Y (5%) (3) $E[X Y=y]$ (5%) (4) $P(2X+Y \le 3/2)$ (5%) VI. Let X have a pdf $f(x)$ which is a mixture of two pdfs f_1 and f_2 as follows: $f(x) = (1-\epsilon) f_1(x) + \epsilon f_2(x), \ 0<\epsilon<1.$ Suppose now $f_i(x)$ is the pdf of a normal distribution with mean μ_i and variance σ_i^2 , $i=1, 2$. Find (1) $E[X]$ (5%) (2) $Var(X)$ (5%) | ¥ | | | Find (1) a (5%) (2) Marginal pdf of Y (5%) (3) $E[XY=y]$ (5%) (4) $P(2X+Y \le 3/2)$ (5%) VI. Let X have a pdf $f(x)$ which is a mixture of two pdfs f_1 and f_2 as follows: $f(x) = (1-\varepsilon) f_1(x) + \varepsilon f_2(x), \ 0<\varepsilon<1.$ Suppose now $f_i(x)$ is the pdf of a normal distribution with mean μ_i and variance σ_i^2 , $i=1, 2$. Find (1) $E[X]$ (5%) (2) $Var(X)$ (5%) | • | | | (1) a (5%) (2) Marginal pdf of Y (5%) (3) $E[X Y=y]$ (5%) (4) $P(2X+Y \le 3/2)$ (5%) VI. Let X have a pdf $f(x)$ which is a mixture of two pdfs f_1 and f_2 as follows: $f(x) = (1-\varepsilon) f_1(x) + \varepsilon f_2(x), \ 0 < \varepsilon < 1.$ Suppose now $f_i(x)$ is the pdf of a normal distribution with mean μ_i and variance σ_i^2 , $i=1, 2$. Find (1) $E[X]$ (5%) (2) $Var(X)$ (5%) | | | | (2) Marginal pdf of Y (5%) (3) $E[X Y=y]$ (5%) (4) $P(2X+Y \le 3/2)$ (5%) VI. Let X have a pdf $f(x)$ which is a mixture of two pdfs f_1 and f_2 as follows: $f(x) = (1-\varepsilon) f_1(x) + \varepsilon f_2(x), 0 < \varepsilon < 1.$ Suppose now $f_i(x)$ is the pdf of a normal distribution with mean μ_i and variance $\sigma_i^2, i=1, 2. \text{ Find}$ (1) $E[X]$ (5%) (2) $Var(X)$ (5%) | | (5 <i>%</i>) | | (3) E[XiY=y] (5%) (4) P(2X+Y ≤ 3/2) (5%) VI. Let X have a pdf f(x) which is a mixture of two pdfs f₁ and f₂ as follows: f(x) = (1-ε) f₁(x) + ε f₂(x), 0<ε<1. Suppose now fᵢ(x) is the pdf of a normal distribution with mean μᵢ and variance σ²₁, i=1, 2. Find (1) E[X] (5%) (2) Var(X) (5%) | | | | (4) P(2X+Y ≤ 3/2) (5%) VI. Let X have a pdf f(x) which is a mixture of two pdfs f₁ and f₂ as follows: f(x) = (1-ε) f₁(x) + ε f₂(x), 0<ε<1. Suppose now f₁(x) is the pdf of a normal distribution with mean μ₁ and variance σ², i=1, 2. Find (1) E[X] (5%) (2) Var(X) | | | | $f(x) = (1-\varepsilon) f_1(x) + \varepsilon f_2(x), 0 < \varepsilon < 1.$ Suppose now $f_i(x)$ is the pdf of a normal distribution with mean μ_i and variance $\sigma_i^2, i=1, 2. \text{ Find}$ (1) E[X] (5%) (2) Var(X) | | | | $f(x) = (1-\varepsilon) f_1(x) + \varepsilon f_2(x), 0 < \varepsilon < 1.$ Suppose now $f_i(x)$ is the pdf of a normal distribution with mean μ_i and variance $\sigma_i^2, i=1, 2. \text{ Find}$ (1) E[X] (5%) (2) Var(X) | | 5 | | Suppose now $f_i(x)$ is the pdf of a normal distribution with mean μ_i and variance σ_i^2 , $i=1, 2$. Find (1) E[X] (5%) (2) Var(X) (5%) | | | | σ_i^2 , i=1, 2. Find (1) E[X] (5%) (2) Var(X) (5%) | · · · · · · · · · · · · · · · · · · · | ince / | | (1) E[X] (5%) (2) Var(X) (5%) | | I | | (2) Var(X) (5%) | • | (5%) | | (3) The moment generating function of X | | (5%) | | (3) The monthly printing remains at 12 - 17 /2 | (3) The moment generating function of X. $-\frac{1}{2}\int_{Z}^{Z}$ | (5%) |