國立中央大學95學年度碩士班考試入學試題卷 共一頁 第一頁

所別:<u>數學系碩士班 甲組(一般生)</u>科目:<u>高等微積分</u> (學位在職生)

- 1. (20%) Let (M,d) be a metric space and $A,B\subseteq M$. Use $\operatorname{int}(A)$ to denote the interior of A. Prove or disprove that
 - (i) $int(A) \cap int(B) = int(A \cap B)$,
 - (ii) $int(A) \cup int(B) = int(A \cup B)$.
- 2. (20%) Let (M,d) be a metric space and $f: M \mapsto M$ satisfy d(f(x),f(y)) < d(x,y) for all $x,y \in M$ with $x \neq y$. Prove that if M is compact, then f has a unique fixed point.
- 3. (15%) Let $A \subseteq \mathbb{R}$ and $B \subseteq \mathbb{R}$ be bounded below and define $A+B = \{x+y | x \in A \text{ and } y \in B\}$. Prove or disprove that $\inf(A+B) = \inf A + \inf B$.
- 4. (15%) Let K be a compact subset of \mathbb{R}^n and $f:K\mapsto\mathbb{R}$ be continuous. Prove or disprove that $M=\{x\in K\mid f(x)\text{ is the maximum of }f\text{ on }K\}$ is a compact subset of \mathbb{R}^n .
- 5. (15%) Prove or disprove that $f(x) = 1/(x^2 + 1)$ is uniformly continuous on \mathbb{R} .
- 6. (15%) Let $f_n(x) = \frac{nx}{1+nx^2}$, $\frac{1}{\pi} \le x \le 2$. Prove or disprove that $\{f_n\}$ converges uniformly on $[\frac{1}{\pi}, 2]$.