國立中央大學九十一學年度碩士班研究生入學試題卷

所別: 數學系 不分組 科目: 抽象代數 共 2 頁 第 / 頁

以下各題,只給答案,沒有說明,不給分

- (a) (8 分) Let N, H be two groups. Assume that there exits a group homomorphism φ: H → Aut(N), where Aut(N) is the group of automorphisms of N, then the semi-direct product N×H of N and H (with respect to φ) is the set N×H together with the binary operation * such that (n₁, h₁) * (n₂, h₂) = (n₁ φ(h₁)(n₂), h₁h₂) for every n₁, n₂ ∈ N and h₁, h₂ ∈ H. Show that N × H is a group under the binary operation *.
 - (b) $(7 \ \%)$ Let G be a group and let N, H be subgroups of G. Assume that N is normal in G. For $h \in H$, let $i_h(n) = hnh^{-1}, \forall n \in N$. Verify that the map $\phi(h) = i_h$ is a group homomorphism from H to $\operatorname{Aut}(N)$. Assume that $N \cap H = \{e\}$ and G = NH. Show that G is isomorphic to the semi-direct product of N and H (with respect to ϕ).
 - (c) (10 \Re) Let $N, H \leq G$ be as in (b) such that N is normal in G. Assume that $N \cap H = \{e\}$ and G = NH. Let J be a subgroup of G. Consider the set $H_J = \{h \in H \mid nh \in J \text{ for some } n \in N\}$. Show that H_J is a subgroup of H and is isomorphic to the quotient group $J/J \cap N$.
- 2. (a) (10 分) Let S_5 denote the symmetric group of degree 5 (i.e. the permutation group of 5 letters). What is the order of a Sylow 5-subgroup of S_5 ? How many Sylow 5-subgroups does S_5 have? You need to explain your answers.
 - (b) (10 分) Let G be a finite group of order n and let m be a divisor of n. Assume that there are exactly r $(r \ge 1)$ subgroups of G which are of order m. Let H be any subgroup of G of order m and let N(H) denote the normalizer of H. Show that if $r \nmid n$ then [G:N(H)] < r.
- 3. (10 \Rightarrow) Let M be an Abelian group. A homomorphism of M into itself is called an endomorphism of M. Let $\operatorname{End}(M)$ be the set of all endomorphisms of M. Define multiplication on $\operatorname{End}(M)$ by function composition and addition on $\operatorname{End}(M)$ by $(\phi + \psi)(m) = \phi(m) + \psi(m), \forall m \in M \text{ and } \phi, \psi \in \operatorname{End}(M)$. It is already known that $\operatorname{End}(M)$ forms a ring under the multiplication and addition defined above. Let M_1, M_2 be two Abelian groups. Prove or disprove that $\operatorname{End}(M_1 \times M_2)$ is isomorphic to $\operatorname{End}(M_1) \times \operatorname{End}(M_2)$.
- 4. (a) (10 分) Show that in a principal ideal domain, a non-zero ideal is prime if and only if it is a maximal ideal.

國立中央大學九十一學年度碩士班研究生入學試顯祭

所別: 數學系 不分組 科目: 抽象代數 共 2 頁 第 2 頁

- (b) (15 \Re) Let $\mathbb{Q}[x]$ denote the polynomial ring with coefficients in \mathbb{Q} . For any $f(x) \in \mathbb{Q}[x]$, define $\phi(f) = f(\sqrt{2} \sqrt{3})$. Verify that $\phi : \mathbb{Q}[x] \to \mathbb{R}$ is a ring homomorphism, where \mathbb{R} is considered as a ring under the usual addition and multiplication of real numbers. Show that the image of ϕ is a subfield of the field of real numbers \mathbb{R} and describe what this subfield is.
- 5. Recall that a finite field is a field consisting of finitely many elements.
 - (a) (8 \Re) Let \mathbb{F} be a finite field. Prove that the number of elements of \mathbb{F} is equal to p^f for some prime number p and some integer $f \geq 1$.
 - (b) (12 分) Construct a finite field of 25 elements.