國立中央大學八十五學年度碩士班研究生入學試題卷 所則: 數學研究所 不分組 科目: 抽象代數 共/頁 第/頁

Notations: The positive integers, integers, rational numbers will be denoted by $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ respectively.

- (1) (a) (10 %) Let G be a group and let $\phi: G \to \mathbb{Z}$ be a group homomorphism from G to the additive group of integers \mathbb{Z} . Show that the kernel of ϕ contains the commutator subgroup of G.
- (b) (10 %) Let R be a commutative ring with unit element and let $\psi: R \to \mathbb{Z}$ be a ring homomorphism from R to the ring of integers \mathbb{Z} . Show that the kernel of ψ is a prime ideal of R. (An ideal I is prime if for any two elements a, b of R, $ab \in I$ implies $a \in I$ or $b \in I$.)
- (2) (10 %) Does there exit a field consisting of 1996 elements? If the answer is Yes, give an example and verify your answer. If the answer is No, explain why.
- (3) (20 %) Let G be a finite group and let H be a subgroup of G. The conjugates of H in G are subgroups of the form $gHg^{-1}, g \in G$. Show that the number of distinct conjugates of H in G is the index of N(H) in G, where

$$N(H) = \{ g \in G \, | \, gHg^{-1} = H \}.$$

(4) (15 %) Let R be a commutative ring and let I be an ideal of R. The radical of I is the set

$$\mathfrak{R}(I) = \{ r \in R \mid r^n \in I \text{ for some } n \in \mathbb{N} \}.$$

Show that $\Re(I)$ is an ideal of R.

- (5) (15 %) Let S_4 denote the permutation group on 4 elements. How many 2-Sylow subgroups does S_4 have? Determine all the 2 Sylow subgroups of S_4 .
- (6) (20 %) Let E be a splitting field of the polynomial $(x^2-3)(x^2-5)$. What is the degree $[E:\mathbb{Q}]$ of E over \mathbb{Q} ? Determine the Galois group $Gal(E/\mathbb{Q})$ of the polynomial $(x^2-3)(x^2-5)$.