博碩士論文 943209009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:72 、訪客IP:18.190.219.238
姓名 蕭文鏡(Wen-ching Hsiao)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 利用無電鍍技術結合模板法製備純鎳金屬奈米管及空心球之研究
(Electroless Synthesis of Large-Scale Pure Nickel Nanotubes and hollow spheres using Removable Templates)
相關論文
★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究
★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究
★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究
★ 新穎太陽能電池基板表面粗糙化結構之研究★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究
★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究
★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究
★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究
★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究★ 金屬氧化物奈米結構製備及其表面親疏水性質之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於先進奈米製程技術在未來奈米元件發展中扮演著關鍵的角色,而近年,中空結構之金屬奈米材料無論是在光電、化學感測以及觸媒上皆發現有相當大的應用潛力。因此如何大量製備與分析其特性即成了研究的重點。
本實驗的研究即整合以聯胺為還原劑之無電鍍鎳薄膜技術與移除模板法的方式,成功地大量製備出純鎳金屬之空心奈米材料。為了合成出ㄧ維之鎳金屬奈米管,模板部分首度採用具有均勻表面、高長寬比及熱穩定性良好之氧化矽奈米線來做為模板。經過APTMS官能基、活化、以及聯胺為還原劑之無電鍍鎳等步驟後,均勻氧化矽奈米線/純鎳金屬之核-殼奈米線結構即可完成。最後利用氫氟酸水溶液溶除中心氧化矽奈米線模板後,首度成功的製備出大面積純鎳金屬空心奈米管。金屬奈米管之內徑約30-150 nm,長度可達數十微米尺寸。此外,中空奈米球之合成,可利用均ㄧ粒徑之聚苯乙烯微奈米圓球來作為模板,藉由以聯胺為還原劑之無電鍍鎳薄膜技術並移除內部球核後,成功的製備出大面積之純鎳金屬空心球結構材料。
對於上述製備出之鎳金屬空心奈米材料,其表面形貌、晶體結構以及化學組成等,本研究利用SEM、TEM、EDS、SAED與HRTEM做有系統的鑑定分析。由所得之研究結果顯示,對於以均ㄧ粒徑之膠體粒子和高長寬比之氧化矽奈米線來作為模板,結合APTMS和聯胺所改進之無電鍍技術,可預期將可用以製備出其它各式高純度金屬中空奈米材料。
摘要(英) The advanced nanoscale fabrication technology is expected to play a key role in the applications of future nanodevices. Recently, the metal nanomaterials with hollow interiors have already been found their potential application in advanced optoelectronics, chemical sensors, and catalysts. Therefore, many research efforts have been dedicated to the large-scale syntheses of hollow nanomaterials.
In the present study, a new and facile route for the large-scale synthesis of high-purity hollow Ni metal nanomaterials has been developed by using the hydrazine-modified electroless Ni deposition processes with sacrificial templates. For the synthesis of the one-dimensional (1D) Ni metal nanotubes, amorphous silicon oxide (a-SiOx) nanowires are used as the sacrificial templates because it possesses the smooth surface, high aspect ratio, and good thermal stability. After the 3-aminopropyl-trimethoxysilane (APTMS) functionalization, activation, and hydrazine modified electroless Ni plating processes, a uniform a-SiOx/pure Ni core-shell nanowire structure was produced. By etching away the inner a-SiOx nanowire templates with dilute HF solution, pure hollow Ni nanotubes were then obtain. The inner diameters of the pure Ni nanotubes were about 30-150 nm and the length was several tens of micrometers. For the synthesis of the hollow metal spheres, monodispersed colloidal polystyrene spheres of equal size were served as the templates. After the hydrazine modified electroless Ni deposition and subsequent removal the inner PS sphere cores, large quantities of pure hollow Ni metal spheres were first successfully synthesized in this study.
The surface morphology, crystal structure, and chemical composition of the synthesized products were systematically characterized by SEM, TEM, SAED, EDS, and high-resolution TEM. The observed results present the exciting prospect that using the colloidal spheres of equal size and high-aspect-ratio a-SiOx nanowires as the removable templates, the noval APTMS and hydrazine modified electroless deposition technique promises to be applicable to the large-scale synthesis of a variety of high-purity hollow metal nanomaterials.
關鍵字(中) ★ 金屬空心球
★ 金屬奈米管
★ 無電鍍
關鍵字(英) ★ metal hollow sphere
★ metal nanotube
★ electroless
論文目次 第一章 簡介 1
1.1 前言 1
1.2 無電鍍原理 2
1.2.1 無電鍍液組成及特性 2
1.2.2 無電鍍之前處理 4
1.2.3 固-液相界面之化學反應 5
1.3 奈米材料特性及其製備 6
1.3.1 化學氣相沈積法 7
1.3.2 微奈米球自組裝技術 8
1.4 研究動機 8
第二章 實驗步驟 10
2.1 利用無電鍍及模板法製備鎳金屬奈米管 10
2.1.1 矽晶基材清洗流程 10
2.1.2 電子槍蒸鍍金薄膜 10
2.1.3 高溫熱處理生長氧化矽奈米線 10
2.1.4 無電電鍍鎳 11
2.2核-殼結構及空心金屬微球之合成 12
2.2.1基材清洗流程 12
2.2.2 自組裝製備奈米球陣列 12
2.2.3 無電電鍍鎳 12
2.2.4 空心鎳金屬球殼 13
2.3 化學藥品 13
2.4 分析儀器 15
2.4.1 掃描式電子顯微鏡 15
2.4.2 穿透式電子顯微鏡與X光能量散佈光譜儀 15
2.4.3 高解析穿透式電子顯微鏡 15
第三章 純鎳金屬奈米管之製備及分析 16
3.1利用高溫熱處理製備氧化矽奈米線 16
3.2無電鍍鎳金屬薄膜披覆於氧化矽奈米線 16
3.2.1敏化活化法 + 次磷酸鈉之無電鍍組成 17
3.2.2敏化活化法 + 聯胺之無電鍍組成 18
3.2.3 APTMS + 醋酸鎳之無電鍍組成 19
3.3純鎳金屬奈米管之特殊結構及特性分析 22
第四章 核-殼結構及空心鎳金屬微奈米圓球之製備及分析 23
4.1自組裝聚苯乙烯微奈米圓球陣列 23
4.2 鎳金屬空心球之製備 23
4.2.1 傳統無電鍍液組成 24
4.2.2 無電鍍純鎳之鍍液組成 25
4.2.3 低濃度無電鍍純鎳之鍍液組成 25
4.3 大面積空心鎳金屬球陣列製備與特性分析 27
第五章 結論與未來展望 29
5.1 結論 29
5.2 未來展望:生物晶片 30
參考文獻 31
表目錄 39
圖目錄 47
參考文獻 [1] F. M. F. Rhen, E. Backen, and J. M. D. Coey, “Thick-Film Permanent Magnets by Membrane Electrodeposition”, J. Appl. Phys. 97 (2005) 113908-113911.
[2] S. Araki, N. Mohri, Y. Yoshimitsu, and Y. Miyake, “Synthesis, Characterization and Gas Permeation Properties of a Silica Membrane Prepared by High-Pressure Chemical Vapor Deposition”, J. Membr. Sci. 290 (2007) 138-145.
[3] B. McCool, G. Xomeritakis, and Y. S. Lin, “Composition Control and Hydrogen Permeation Characteristics of Sputter Deposited Palladium–Silver Membranes”, J. Membr. Sci. 161 (1999) 67-76.
[4] M. Saitou, I. Ota, A. Nakano, and S. M. A. Hossain, “Electrodeposition of Silver Thin Films with Shiny Appearances from an Electrolyte Comprising Silver Ferrocyanide-Thiocyanate and Antimony Potassium Tartrate”, Surf. Coat. Technol. 201 (2007) 6947-6952.
[5] L. Peverini, E. Ziegler, and I. Kozhevnikov, “Dynamic Scaling in Sputter Grown Tungsten Thin Films”, Thin Solid Films 515 (2007) 5541-5545.
[6] R. V. Wang, F. Jiang D. D. Fong, G. B. Stephenson, P. H. Fuoss, J. A. Eastman, S. K. Streiffer, K. Latifi, and C. Thompson, “In situ X-Ray Studies of Metal Organic Chemical Vapor Deposition of PbZ(x)Ti(1-x)O(3)”, Thin Solid Films 515 (2007) 5593-5596.
[7] C. M. Das, P. K. Limaye, A. K. Grover, and A. K. Suri, “Preparation and Characterization of Silicon Nitride Codeposited Electroless Nickel Composite Coatings”, J. Alloys Compd. 436 (2007) 328-334.
[8] A. Pineirio-Jimenez, C. Vilialobos-Gutierrez, M. H. Staia, and E. S. Puchi-Cabrera, “Tensile and Fatigue Properties of 6063-T6 Aluminium Alloy Coated with Electroless Ni-P Deposit”, Mater. Sci. Technol. 23 (2007) 253-263.
[9] W. X. Zhang, N. Huang, J. G. He, Z. H. Jiang, Q. Jiang, and J. S. Lian, “Electroless Deposition of Ni–W–P Coating on AZ91D Magnesium Alloy”, Appl. Surf. Sci. 253 (2007) 5116-5121.
[10] M. Yoshino, Y. Nonaka, J. Sasano, I. Matsuda, Y. Shacham-Diamand, and T. Osaka, “All-Wet Fabrication Process for ULSI Interconnect Technologies”, Electrochim. Acta. 51 (2005) 916-920.
[11] J. L. Jiang, H. Q. Lu, L. X. Zhang, and N. P. Xu, “Preparation of Monodisperse Ni/PS Spheres and Hollow Nickel Spheres by Ultrasonic Electroless Plating”, Surf. Coat. Technol. 201 (2007) 7174-7179.
[12] K. Arima, H. Hara, J. Murata, T. Ishida, R. Okamoto, K. Yagi, Y. Sano,H. Mimura, and K. Yamauchi, “Atomic-Scale Flattening of SiC Surfaces by Electroless Chemical Etching in HF Solution with Pt Catalyst”, Appl. Phys. Lett. 90 (2007) 202106-202109.
[13] L. Y. Zhao, A. C. L. Siu, J. A. Petrus, Z. H. He, and K. T. Leung, “Interfacial Bonding of Gold Nanoparticles on a H-terminated Si(100) Substrate Obtained by Electro- and Electroless Deposition”, JACS 129 (2007) 5730-5734.
[14] J. Y. Lee, S. Horiuchi, and H. K. Choi, “Effects of Deposition Temperature and Chemical Composition on the ZnO Crystal Growth on the Surface of Pd Catalyst through Electroless Chemical Reaction”, Mater. Chem. Phys. 101 (2007) 387-394.
[15] J. B. Jun, M. S. Seo, S. H. Cho, J. G. Park, J. H. Ryu, and K. D. Suh, “Synthesis of Monodisperse Nickel-Coated Polymer Particles by Electroless Plating Method Utilizing Functional Polymeric Ligands”, J. Appl. Polym. Sci. 100 (2006) 3801-3808.
[16] W. Wang, N. Li, X. Li, W. Geng, and S. Qiu, “Synthesis of Metallic Nanotube Arrays in Porous Anodic Aluminum Oxide Template through Electroless Deposition”, Mater. Res. Bull. 41 (2006) 1417-1423.
[17] T. Sondergaard and S. I. Bozhevolnyi, “Metal Nano-strip Optical Resonators”, Opt. Express 15 (2007) 4198-4204.
[18] W. J. Cho and C. G. Ahn, “Thermal Annealing Effects on the Electrical Characteristics of the Back Interface in Nano-silicon-on-Insulator Channel”, Appl. Phys. Lett. 90 (2007) 143509-143511.
[19] D. M. Newman, M. L. Wears, M. Jollie, and D. Choo, “Fabrication and Characterization of Nano-particulate PtCo Media for Ultra-High Density Perpendicular Magnetic Recording”, Nanotechnology 18 (2007) 205301-205309.
[20] M. Kiuchi, S. Matsui, and Y. Isono, “Mechanical Characteristics of FIB Deposited Carbon Nanowires Using an Electrostatic Actuated Nano Tensile Testing Device”, J. Microelectromech. Syst. 16 (2007) 191-201.
[21] J. P. Edgeworth, N. R. Wilson, and J. V. Macpherson, “Controlled Growth and Characterization of Two-Dimensional Single-Walled Carbon-Nanotube Networks for Electrical Applications”, Small 3 (2007) 860-870.
[22] A. J. Hart, L. van Laake, and A. H. Slocum, “Desktop Growth of Carbon-Nanotube Monoliths with in situ Optical Imaging”, Small 3 (2007) 772-777.
[23] S. Iijima, “Helical Microtubules of Graphitic Carbon”, Nature 354 (1991) 56-58.
[24] V. M. Dubin, “Electroless Ni-P Deposition on Silicon with Pd Activation”, J. Electrochem. Soc. 139 (1992) 1289-1294.
[25] R. L. Jackson, “Pd+2/Poly(acrylic acid) Thin Films as Catalysts for Electroless Copper Deposition: Mechanism of Catalyst Formation”, 137 (1990) 95-101.
[26] R. Touir, H. Larhzil, M. EbnTouhami, M. Cherkaoui, and E. Chassaing, “Electroless Deposition of Copper in Acidic Solutions Using Hypophosphite Reducing Agent”, J. Appl. Electrochem. 36 (2006) 69-75.
[27] I. Baskaran, R. Sakthi Kumar, T. S. N. Sankara Narayanan, and A. Stephen, “Formation of Electroless Ni–B Coatings Using Low Temperature Bath and Evaluation of Their Characteristic Properties”, Surf. Coat. Technol. 200 (2006) 6888-6894.
[28] S. Haag, M. Burgard, and B. Ernst, “Pure Nickel Coating on a Mesoporous Alumina Membrane: Preparation by Electroless Plating and Characterization”, Surf. Coat. Technol. 201 (2006) 2166-2173.
[29] S. Y. Chang, C. W. Lin, H. H. Hsu, J. H. Fang, and S. J. Lin, “Integrated Electrochemical Deposition of Copper Metallization for Ultralarge-Scale Integrated Circuits”, J. Electrochem. Soc. 151 (2004) C81-C88.
[30] A. Vaskelis, R. Juskenas, and J. Jaciauskiene, “Copper Hydride Formation in the Electroless Copper Plating Process: in Situ X-ray Diffraction Evidence and Electrochemical Study”, Electrochim. Acta 43 (1998) 1061-1066.
[31] C. M. Liu, W. L. Liu, S. H. Hsieh, T. K. Tsai, and W. J. Chen, “Interfacial Reactions of Electroless Nickel Thin Films on Silicon”, Appl. Surf. Sci. 243 (2005) 259-264.
[32] N. Takano, N. Hosoda, T. Yamada, and T. Osaka, “Mechanism of the Chemical Deposition of Nickel on Silicon Wafers in Aqueous Solution”, J. Electrochem. Soc. 146 (1999) 1407-1411.
[33] Z. Li, X. F. Qian, J. Yin, and Z. K. Zhu, “Gold Tubes Membrane with Novel Morphology Replicated from ZnO Template”, J. Solid State Chem. 178 (2005) 1765-1772.
[34] H. H. Hsu, C. W. Teng, S. J. Lin, and J. W. Yeh, “Sn/Pd Catalyzation and Electroless Cu Deposition on TaN Diffusion Barrier Layers”, J. Electrochem. Soc. 149 (2002) C143-C149.
[35] N. Takano, D. Niwa, T. Yamada, and T. Osaka, “Nickel Deposition Behavior on n-type Silicon Wafer for Fabrication of Minute Nickel Dots”, Electrochim. Acta 45 (2000) 3263-3268.
[36] H. J. Zhang, X. W. Wu, and Q. L. Jia, “Preparation and Microwave Properties of Ni-SiC Ultrafine Powder by Electroless Plating”, Mater. Des. 28 (2007) 1369-1373.
[37] S. H. Chung, Y. Wang, L. Persi, F. Croce, S. G. Greenbaum, B. Scrosati, and E. Plichta, “Enhancement of Ion Transport in Polymer Electrolytes by Addition of Nanoscale Inorganic Oxides”, J. Power Sources 97-98 (2001) 644-648.
[38] S. W. Kim, M. Kim, W. Y. Lee, and T. Hyeon, “Fabrication of Hollow Palladium Spheres and Their Successful Application to the Recyclable Heterogeneous Catalyst for Suzuki Coupling Reactions”, J. Am. Chem. Soc. 124 (2002) 7642-7643.
[39] P. Kohli, C. C. Harrell, Z. Cao, R. Gasparac, W. Tan, and C. R. Martin, “DNA-Functionalized Nanotube Membranes with Single-Base Mismatch Selectivity”, Science 305 (2004) 984-986.
[40] R. Sardar, T. B. Heap, and J. S. Shumaker-Parry, “Versatile Solid Phase Synthesis of Gold Nanoparticle Dimers Using an Asymmetric Functionalization Approach”, J. Am. Chem. Soc. 129 (2007) 5356-5357.
[41] J. Wang and T. Ito, “CVD Growth and Field Emission Characteristics of Nano-structured Films Composed of Vertically Standing and Mutually Intersecting Nano-carbon Sheets”, Diamond Relat. Mater. 16 (2007) 589-593.
[42] R. S. Wagner and W. C. Ellis, “Vapor-Liquid-Solid Mechanism of Single Crystal Growth”, Appl. Phys. Lett. 4 (1964) 89-90.
[43] Y. L. Chueh, L. J. Chou, C. M. Hsu, and S. C. Kung, “Synthesis and Characterization of Taper- and Rodlike Si Nanowires on SixGe1-x Substrate”, J. Phys. Chem. B 109 (2005) 21831-21835.
[44] N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, and S. T. Lee, “Nucleation and Growth of Si Nanowires from Silicon Oxide”, Phys. Rev. B: Condens. Matter 58 (1998) 16024-16026.
[45] S. S. Brenner and G. W. Sears, “Mechanism of Whisker Growth III Nature of Growth Sites”, Acta Metall. 4 (1956) 268-270.
[46] H. F. Yan, Y. J. Xing, Q. L. Hang, D. P. Yu, Y. P. Wang, J. Xu, Z. H. Xi, and S. Q. Feng, “Growth of Amorphous Silicon Nanowires via a Solid-Liquid-Solid Mechanism”, Chem. Phys. Lett. 323 (2000) 224-228.
[47] G. M. Whitesides and B. Grzybowski, “Self-Assembly at All Scales”, Science 295 (2002) 2418-2421.
[48] R. Micheletto, H. Fukuda, and M. Ohtsu, “A Simple Method for the Production of a Two-Dimensional Ordered Arrays of Small Latex Particles”, Langmuir 11 (1995) 3333-3336.
[49] N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of Formation of 2-D Crystals from Latex Particles on Substrates”, Langmuir 8 (1992) 3183-3190.
[50] X. An, G. Meng, Q. Wei, M. Kong, and L. Zhang, “SiO2 Nanowires Growing on Hexagonally Arranged Circular Patterns Surrounded by TiO2 Films”, J. Phys. Chem. B 110 (2006) 222-226.
[51] J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. Van Duyne, “Nanosphere Lithography Size Tunable Silver Nanoparticle and Surface Cluster Arrays”, J. Phys. Chem. B 103 (1999) 3854-3863.
[52] J. Rybczynsky, U. Ebels, and M. Giersig, “Large-Scale 2D Arrays of Magnetic Nanoparticles”, Colloids Surf., A 219 (2003) 1-6.
[53] A. Gil and F. Guitian, “Formation of 2D Colloidal Crystals by the Langmuir Blodgett Technique Monitored in Situ by Brewster Angle Microscopy”, J. Colloid Interface Sci. 307 (2007) 304-307.
[54] M. Suzuki, T. Yasukawa, H. Shiku, and T. Matsue, “Negative Dielectrophoretic Patterning with Colloidal Particles and Encapsulation into a Hydrogel”, Langmuir 23 (2007) 4088-4094.
[55] S. L. Cheng, S. W. Lu, S. L. Wong, C. C. Chang, H. Chen, “Fabrication of 2D Ordered Arrays of Cobalt Silicide Nanodots on (001)Si Substrates”, J. Cryst. Growth 300 (2007) 473-477.
[56] A. K. Srivastava, S. Madhavi, T. J. White, and R. V. Ramanujan, “The Processing and Characterization of Magnetic Nanobowls”, Thin Solid Films 505 (2006) 93-96.
[57] Y. Wang, S. B. Han , A. L. Briseno, R. J. G. Sanedrin, and F. M. Zhou, “A Modified Nanosphere Lithography for the Fabrication of Aminosilane/Polystyrene Nanoring Arrays and the Subsequent Attachment of Gold or DNA-Capped Gold Nanoparticles”, J. Mater. Chem. 14 (2004) 3488-3494.
[58] K. L. Lin and P. J. Lai, “Interdiffusion of the Electroless Ni-P Deposit with the Steel Substrate”, J. Electrochem. Soc. 137 (1990) 1509-1513.
[59] H. Shimauchi, S. Ozawa, K. Tamura, and T. Osaka, “Preparation of Ni-Sn Alloys by an Electroless-Deposition Method”, J. Electrochem. Soc. 141 (1994) 1471-1476.
[60] J. Joo, S. J. Lee, D. H. Park, Y. S. Kim, Y. Lee, C. J. Lee, and S. R. Lee, “Field Emission Characteristics of Electrochemically Synthesized Nickel Nanowires with Oxygen Plasma Post-Treatment”, Nanotechnology 17 (2006) 3506-3511.
[61] M. Watanabe, H. Yamashita, X. Chen, J. Yamanaka, M. Kotobuki, H. Suzuki, and H. Uchida, “Nano-sized Ni Particles on Hollow Alumina Ball Catalysts for Hydrogen Production”, Appl. Catal. B 71 (2007) 237-245.
[62] 楊聰仁,”無電鍍鎳及其應用”,國璋出版社 (1987)。
[63] R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, J. A. Davis, A. P. Guthrie, M. B. Hommer, M. A. Jackson, P. C. Smith, D. G. Walter, and M. J. Natan, “Self-Assembled Metal Colloid Monolayers-An Approach to SERS Substrates”, Science 267 (1995) 1629-1632.
[64] J. Gao, F. Tang, and J. Ren, “Electroless Nickel Deposition on Amino-Functionalized Silica Spheres”, Surf. Coat. Technol. 200 (2005) 2249-2252.
[65] H. Guo, Z. P. Qin, J. Wei, and C. X. Qin, “Synthesis of Novel Magnetic Spheres by Electroless Ni Coating of Polymer Spheres”, Surf. Coat. Technol. 200 (2005) 2531-2536.
指導教授 鄭紹良(Shao-Liang Cheng) 審核日期 2007-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明