博碩士論文 943209011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:3.149.229.253
姓名 林明秀(Ming Shiou)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 Alq3昇華下降與生物啟發奈米線
(Sublimation point depression and bio-inspired nanowires of Alq3)
相關論文
★ 藉由結晶製程製備高水溶性化合物: 十二烷基硫酸鈉(SDS) 以及控制其水合物★ 唑來膦酸三水合物的初始溶劑篩選和在羥基磷灰石之表面吸附行為
★ 乙烯氨酚的結晶研究:溶劑.界面與固態分散的篩選★ 外消旋(R/S)-(+/-)伊普的初始溶劑篩選及伊普鈉鹽結晶動力學
★ 外消旋(R,S)-(±)-伊普鹽二水化合物的介晶質,成核與結晶成長★ 卡爾指數與溶解速率常數的交叉行為關係與混合率的應用:批次對乙醯氨基酚的研究
★ 蔗糖的同質異構型構★ 磺胺噻唑的初始/雞尾酒混合溶劑式篩選和利用多型晶體的耕作方式篩選
★ 關於量產路徑之初步鹽類篩選程序:以外消旋布洛芬之兩個不同鹽類為例★ 卡馬西平的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造
★ 西咪替丁的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造★ 利用超音波結晶法降低小分子有機半導體分子的昇華點 以及藉由蛋殼膜增進AlQ3奈米管的光激發螢光強度
★ 仿效生物膽結石的形成:在逐漸演化的(牛磺膽酸鈉-卵磷質-膽固醇)複雜脂質系統中結晶碳酸鈣★ Spherical Crystallization for Lean Solid-Dose Manufacturing by Initial Solvent Screening: The Study of Phenylbutazone
★ 蔗糖的多構形多形晶體與乙醯氨酚共溶劑篩選★ 共晶化合物的篩選、製備、鑑定、分子辨認及應用: 胞嘧啶和二羧酸的研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 有機發光材料製備的有機發光二極體(OLED)由於在平面顯示器與光電元件上優越的特性與有潛力的應用,而比無機發光二極體更吸引世人的注目。有機發光二極體具有獨特的優點,包括可撓性、質輕、全彩性、高發光效率、元件穩定性、廣視角、低成本與低耗能,符合未來顯示器產業「輕、薄、短、小、省、彩、美、多」的發展趨勢。總結目前有機發光二極體在工業生產上主要有兩各瓶頸:(1) 元件有機氣相沉積製程中與操作外加電壓時所產生的高溫;(2) 缺乏對於材料與元件穩定與壽命上界面工程的有效控制。首先,藉由初步溶液篩選,不只是材料的純化與分離,還可在這單元操作中一次得到溶解度、同質異相、晶貌與結晶度。此外,完成8-羥基喹啉鋁(Alq3)的form space作為有用的工程量產資料庫。由二甲基甲醯胺(DMF)再結晶的Alq3具有較低的昇華點,可提供OLED製程中較低的蒸鍍溫度。其次,發展生長於二維基板上Alq3奈米線的界面研究與篩選,包括在生物組織薄膜(例如蛋膜)與自組裝層的生物啟發界面(具甲基官能基的1-Undecanethiol (UDT)與羧基官能基的 11-Mercaptoundecanoic acid ( MUA )。其單一步驟的奈米線製備的單元操作經濟且有效率。此外,以有機生物組織膜與仿生薄膜做為模板來誘發有機奈米線的方法新穎且獨特。本界面研究釐清了材料在模板上的成核與成長,並預防了元件的降解機制。在另一方面,它亦提供了未來在各領域面的可能元件與潛力應用上的優越改良與強化。我們研究Alq3除了因為它為一廣泛用於有機發光二極體的有機螢光材料外,還由於其豐富的相關研究文獻。
摘要(英) The organic light-emitting diodes (OLEDs) based on organic materials are fascinating due to their attractive characteristics and potential applications to flat panel displays and illumination devices over inorganic materials. The OLEDs have unique advantages including flexibility, light weight, colorful gamut, high fluorescence efficiency, device reliability, wide view angle, low economical- and energetic-consuming. In summary, there are two main bottlenecks on the mass production of OLEDs: (1) The high temperature brought about by the deposition method (Organic Vapor Phase Decomposition, OVPD) and the operation (applied driving voltage). (2) An effective control in the stability and lifetime by interfacial engineering. Firstly, via initial solvent screening, not only separation and purification, but also solubility, polymorphism, crystal habit, and crystallinity were available in one-step unit operation. In addition, the form space of Alq3 was established as an useful engineering mass-productive data bank. The depression of sublimation point for Alq3 re-crystallized from DMF offered a lower evaporation temperature of OLED fabrications. Secondly, the interfacial study and screening of Alq3 nanowires grown on 2-dimensional templates including biological membranes (such as eggshell membranes ) and bio-inspired interfaces with mixed SAMs (1-Undecanethiol (UDT) and 11-Mercaptoundecanoic acid( MUA ) having methyl (CH3) and carboxyl (COOH) functional group were developed. The one-step unit operation of nanowires fabrication was efficient and economical. Besides, the organic biological and biometric membranes served as templates to induce organic nanowires were novel and unique. The interfacial study realized the nucleation and growth of materials on templates and avoided the degradation mechanism of devices. On the other hand, it also provided a strong improvement and enhancement of devices and potential applications on various fields in the future. Tris(8-hydroxyquinolinato)aluminum(Alq3) was an extensive organic emitting materials for OLEDs manufacturing and was selected for our investigation because of the rich literatures.
關鍵字(中) ★ 一維奈米結構
★ 奈米線
★ 8-羥基喹啉鋁
關鍵字(英) ★ Alq3
★ nanowires
★ 1-D dimensional structure
★ crystallization
論文目次 Table of Contents
摘要………………………………………………………………………………………I
Abstract………………………………………………………………………………… II
Acknowledgments……………………………………………………………………...IV
Table of Contents………………………………………………………………………..V
List of Tables…………………………………………………………………………...IX
List of Figures………………………………………………………………………….XI
Chapter 1 Executive summary…………………………………………………………..1
1.1 Introduction………………………………………………………………….…1
1.2 Brief Introduction of Alq3……………………………………….…………....12
1.3 Conceptual Framework…………………………………………………….....14
1.4 References……………………………………………………..……………...17
Chapter 2 Instrumental Analysis.………………………………………………………21
2.1 Introduction…………………………………………………………………...21
2.2 Microscopic Methods ………………………………………………………...25
2.2.1 Optical Microscopy (OM) ………………...…………………………25
2.2.2 Low Vacuum Scanning Electron Microscope (LVSEM)…………….28
2.2.3 Transmission Electron Microcopy (TEM)…………………………...36
2.2.4 Atomic Force Microscope (AFM)……………………………………42
2.3 Spectroscopic Methods……………………………………...………………..46
2.3.1 Fourier Transform Infrared (FT-IR) Spectroscopy ….……………..46
2.3.2 Powder X-ray Diffractometry (PXRD)………………………….…...49
2.3.3 Electron Spectroscopy for Chemical Analysis (ESCA)……………...53
2.3.4 Photoluminescence spectroscopy (PL)………………………………57
2.4 Thermal Methods……………………………………….……………………62
2.4.1 Differential Scanning Calorimetry (DSC)…………………...62
2.4.2 Thermogravmetric Analysis (TGA)…………………..……..66
2.5 Conclusions…………………………………………………………...………69
2.6 References…………………………….…...………………………………….70
Chapter 3 Crystallization and Thermal Properties of Alq3 by Initial Solvent Screening………………………………..………….……………………75
3.1 Introduction…………………………...………………………………………75
3.2 Materials………………...…………………………………………………….84
3.2.1 Chemical Regents……………………..……………………………..84
3.2.2 Organic Solvents...……...…………………………………………...84
3.3 Experiments Methods…………………………………………………………89
3.3.1 Solubility Test…………………………………………...…………...89
3.3.2 Re-crystallization of Alq3 by temperature cooling gradient………………………………………………….…………..91
3.3.3 Instrumentation……………………………………………………..92
3.3.3.1 Optical Microscopy (OM)……………………………………..92
3.3.3.2 Fourier Transform Iinfrared (FT-IR) Spectroscopy……………92
3.3.3.3 Differential Scanning Calorimetry (DSC)……………………..93
3.3.3.4 Powder X-ray Diffractometry (PXRD)………………………...93
3.3.3.5 Thermogravimetric Analysis (TGA)…………………………...94
3.3.3.6 UV Lamp………………………………………………………94
3.4 Results and Discussion……………………………………………95
3.4.1 Re-crystallization…………………………………………………....95
3.4.2 Solubility…………………………………………..………………...96
3.4.3 Polymorphism……………………………………………………...105
3.4.4 Crystal Habit………………………………………………………..111
3.4.5 Crystallinity………………………………………………………...115
3.5 Conclusions………………………………………………………………….118
3.6 References…………………………………………………………………...120
Chapter 4 The interfacial study of Alq3 nanowires on the templates of eggshell membranes and mixed SAMs…………………………………….129
4.1 Introduction………………………………………………………………….129
4.2 Materials………………...…………………………………………………...135
4.2.1 Chemical Regents…………………………………………………..135
4.2.2 Organic Solvents…………………….……………………………..135
4.3 Experimental Procedure……………………………………………………..136
4.3.1 Templates Preparation………………………………………….......136
4.3.2 Alq3 Deposition……………………………………………………138
4.4 Characterization………………..……………………………………………140
4.4.1 Low Vacuum Scanning Electron Microscopy (LVSEM)…………..140
4.4.2 Electron Spectroscopy for Chemical Analysis (ESCA) ……….….140
4.4.3 Transmission Electron Microscopy…………………..……………141
4.4.4 Atomic Force Microscopy (AFM)……………………..………….142
4.4.5 Fourier Transform Infrared (FT-IR) Spectroscopy………………..143
4.4.6 Photoluminescence Spectrometer (PL)…………………………….143
4.5 Results and Discussion..……………….…………………………………….145
4.5.1 The observation and characterization of templates and Alq3 grown on templates……………………………………………………………146
4.5.2 The nucleation and growth mechanism of Alq3 nanowires………..158
4.6 Conclusions………………………………………………………………….166
4.7 References……………………………………………….…………………..167
Chapter 5 Conclusions and Future Works……………………………………….174
5.1 Initial Solvent Screening……………………………………………………174
5.2 Bio-inspired Alq3 Nanowires……………………………………………….175
5.3 Conclusions…………………………………………………………………177
參考文獻 A. K. Tiwary, “Modification of crystal habit and its role in dosage form performance,” Drug. Dev. Ind. Pharm. 27(7): 699-709 (2001).
D. J. W. Grant, chapter 1 :“Theory and Origin of polymorphism,” Table 3, “Polymorphism in Pharmaceutical Solids,” ,Edited by H. G. Brttain, Marcel Dekker, New Yourk, pp.7-21, pp.395-400 (1999)
L. Yu, S. M. Reutzel and G. A. Stephenson, “Physical characterization of polymorphic drugs: an integrated characterization strategy,” PSTT., 1(3), 118-127 (1998)
T. L. Threlfall, “Analysis of Organic Polymorphs : A Review,” The analyst, 120(10), 2435-2460 (1995)
G. Nichols and C. S. Frampton, “Physicochemical Characterization of the Orthorhombic Polymorph of Paracetamol Crystallized from Solution,” J. Pharm. Sci., 87(6), 684-693 (1998)
D. Giron, “Thermal Analysis and Calorimetric Methods in the Characterization of Polymorphs and Solvate,” Thermochim. Acta, 248, 1-59 (1995)
D. L. Pavia, G. M. Lampman, G. S. Kriz, “Infrared Spectroscopy,” chapter 2 of “Introduction to spectroscopy,” Third Edition ,Brooks/COLE Thomson Learning, pp.13-24 (2001)
M. Cölle, J. Gmeiner, W. Milius, H. Hillebrecht, W. Brütting,” Preparation and Characterization of Blue-Luminescent Tris(8-hydroxyquinoline)-aluminum (Alq3),” Adv. Funct. Mater., 13(2), 108-112 (2003)
T. C. Kriss, V. M. Kriss, and M.Vesna, “History of the Operating Microscope: From Magnifying Glass to Microneurosurgery,” Neurosurgery, 42(4), 899-907 (1998)
http://www.cella.cn/jxck/02.ppt, “Methods and Techniques for Cell Biology”
D. A. Skoog, F. J. Holler and T. A. Nieman, “Surface Characterization by Spectroscopy and Microscopy,” chapter 21 of “Principles of instrumental analysis,” Fifth edition, Thomson Learning, USA, pp. 549-553 (2001)
R. E. Reed-hill, “Analytical Methods”, chapter 2 of “Physical Metallurgy Principles,” Third Edition, edited by J. Plant, PWS Publishing Company, Boston, USA, pp.53-60 (1994)
R. E. Reed-hill, “Analytical Methods”, chapter 2 of “Physical Metallurgy Principles,” Third Edition, edited by J. Plant, PWS Publishing Company, Boston, USA, pp.44-50 (1994)
A. D. Stefanis and A. A. G. Tomlinson, “Scanning Probe Microscopies-From Surface Structure to Nano-scale Engineering,” Trans Tech Publications LTD, New Hampshire, USA, pp.44,51 (2001)
D. Zheng, H. Li, Y. Wang, and F. Zhamg, “Surface and Interface Analysis of Tris-(8-hydroxyquinoline) Aluminum and Induim-Tin-Oxide Using Atomic Force Microscopy(AFM) and X-ray Photoelectron Spectroscopy(XPS)”, Appl. Surf. Sci., 183(3), 165-172 (2001)
C.B. Prater, P. G. Maivald, K.J. Kjoller, M.G. Heaton, “TappingMode Imaging
Applications and Technology,” Vecco Instrument Inc. AN04, Rev A1 (2004)
T. C. Kriss, V. M. Kriss, and M.Vesna, “History of the Operating Microscope: From Magnifying Glass to Microneurosurgery,” Neurosurgery, 42(4), 899-907 (1998)
D. A. Skoog, F. J. Holler, and T. A. Nieman, “Surface Characterization by Spectroscopy and Microscopy,” Chapter 21 of Principles of Instrucmental Analysis, fifth edition, Thomson Learnin., USA, pp.557-561 (2001)
D. A. Skoog, F. J. Holler and T. A. Nieman, “An Introduction to Infrared Spectrometry,” chapter 16 of “Principles of instrumental analysis”, Fifth edition, Thomson Learning, USA, pp. 380-384 (2001)
H. Li, F. Zhang, Y. Wang, and D. Zheng, “Synthesis and Characterization of Tris-(8-hydroxyquinoline) Aluminum,” Mater. Sci. Eng., B100(1), 40-46 (2003)
M. Muccini , M. A. Loi , K. Kenevey , R. Zamboni , N. Masciocchi , A. Sironi , “Blue Luminescence of Facial Tris(quinolin-8-olato)aluminum(III) in Solution, Crystals, and Thin Films,” Adv. Mater. 16(11), 861-864 (2004)
R. E. Reed-hill, “Analytical Methods,” chapter 2 of “Physical Metallurgy Principles,” Third Edition, edited by J. Plant, PWS Publishing Company, Boston, USA, pp.33-36, (1994)
D. A. Skoog, F. J. Holler and T. A. Nieman, “Atomic X-ray Specrometry,” chapter 12 of “Principles of instrumental analysis,” Fifth edition, Thomson Learning, USA, pp. 278-279 (2001)
K. Durose, S. E. Asher, W. Jaegermann, D. Levi, B. E. McCandless, W. Metzger, H. Moutinho, P. D. Paulson, C. L. Perkins, J. R. Sites, G. Teeter, and M. Terheggen, “Physical Characterization of Thin-film Solar Cells,” Prog. Photovolt.: Res. Appl., 12(2-3), 177-217 (2004)
D. R. Chopra, and A. R. Chourasia, “X-ray photoelectron Spectroscopy, ” Chapter 43 of Handbook of Instrumental Techniques foe Analytical chemistry, edited by F. A. Settle, Prentice Hall PTR, New Jersey, USA, pp.809-812 (1997)
C.-P. Cho, C. –Y. Yu, and T. –P. Perng, “Growth of AlQ3 Nanowires Directly from Amorphous Thin Film and Nanoparticles,” Nanotechnology, 17(21), 5506-5510 (2006)
M. Cölle , J. Gmeiner , W. Milius , H. Hillebrecht , and W. Brütting,“ Growth of AlQ3 nanowires directly from amorphous thin film and nanoparticles,” Adv. Funct. Mater., 13(2) ,(2003)
G. S. Hung, X. L. Wu, Y. Xie, F. Kong, and Z. Y. Zhamg, “Photoluminescence from 8-hydroxy Quinoline Aluminum Embedded in Porous Anodic Alumina Membrane,” Appl. Phys. Lett., 87(15) 151910-1-151910-3 (2005)
D. A. Skoog, F. J. Holler and T. A. Nieman, “Molecular Luminescence Spectrometry,” chapter 15 of “Principles of instrumental analysis,” Fifth edition, Thomson Learning, USA, pp. 355-376 (2001)
D. Giron, “Application of thermal analysis and coupled techniques in pharmaceutical industry,” J. Therm. Anal. Calorim. 68(2): 335-357 (2001).
B. R. Spong, C. P. Price, A. Jayasankar, A. J. Matzger, and N. R. Horndo, “General Principles of Pharmaceutical Solid Polymorphism a Supramolecular Perspective,” Adv. Drug Del. Rev., 56(3), 241-274 (2004)
P. J. Haines, “Thermal Methods of Analysis – Principles, Applications and Problems,” Blackie Acadmic & Professional, p89 (1995)
D. A. Skoog, F. J. Holler and T. A. Nieman, “Thermal Methods,” chapter 31 of “Principles of instrumental analysis,” Fifth edition, Thomson Learning, USA, pp. 805-808 (2001)
D. A. Skoog, F. J. Holler and T. A. Nieman, “Thermal Methods”, chapter 31 of “Principles of instrumental analysis”, Fifth edition, Thomson Learning, USA, pp. 798-801 (2001)
O. P. Filho, G. P. LaTorre, and L. L. Hench, “ Effect of Crystallization on Apatite-layer Formation of Bioactive Glass 45S5,” J. Biomed. Mater. Res., 30(4), 509-514 (1996)
A. Pan, X. Lin, R. Liu, C. Li, X. He, H. Gao and B. Zou, “Surface Crystallization Effects on The Optical and Electric Properties of CdS Nanorods,” Nanotechnology 16(10),2402–2406 (2005)
Y. Akpalu, L. Kielhorn, B. S. Hsiao, R. S. Stein, T. P. Russell, J. V. Egmond, and M. Muthukumar, “Structure Development during Crystallization of Homogeneous Copolymers of Ethene and 1-Octene: Time-Resolved Synchrotron X-ray and SALS Measurements,” Macromol., 32(3), 765-770 (1999)
H. Ahari, R. L. Bedard, C. L. Bowes, N. Coombs, O¨ M. Dag, T. Jiang ,G. A. Ozin, S. Petrov , I. Sokolov, A. Verma, G. Vovk, and D. Young, “Effect of Microgravity on The Crystallization of A Self-assembling Layered material,” Nature, 388(6645), 857 - 860 (1997 )
A. J. Wright, S. E. McGauley, S. S. Narine, W. M. Willis, R. W. Lencki, and A. G. Marangoni, “Solvent Effects on the Crystallization Behavior of Milk Fat Fractions,” J. Agric. Food Chem., 48(4), 1033-1040 (2000)
S. L. Morissette, O. Almarsson, M. L. Peterson, J. F. Remenar, M. J. Read, A. V. Lemmo, S. Ellis, M. J. Cima, and C. R. Gardner, “High-Throughput Crystallization: Polymorphs, Salts Co-crystals and Solvates of Pharmaceutical Solids,” Adv. Drug Del. Rev., 56(3), 275-300 (2004)
A. F. M. Barton, “Handbook of Solubility Parameters and Other Cohesion Parameter,” second edition, CRC Press, USA, pp.69-149 (1991)
H. G. Brittain and D. J. W. Grant, chapter 7 :“Effect of Polymorphism” “Polymorphism in Pharmaceutical Solids,” Edited by H. G. Brttain, Marcel Dekker, New York, pp.282 (1999)
D. J. W. Grant, chapter 1 :“Theory and Origin of polymorphism.” Table 3 ,“Polymorphism in Pharmaceutical Solids,” Edited by H. G. Brttain, Marcel Dekker, New York, pp.7-21, pp.395-400 (1999)
D. J. W. Grant, chapter 1 :“Theory and Origin of polymorphism,” “Polymorphism in Pharmaceutical Solids,” Edited by H. G. Brttain, Marcel Dekker, New Yourk, pp.1-7 (1999)
J. Bernstein, “Cultivating Crystal Forms”, Chem. Commun.,40, 5007-5012 (2005)
A. K. Tiwary, “Modification of Crystal Habit and Its Role in Dosage Form Performance,” Drug Dev. Ind. Pharm., 27(7), 699-709 (2001)
N. Rasenaack, and B. W. Muller, “Crystal Habit and Tableting Behavior,” Int. J. Pharm., 244(1-2), 45-57 (2002)
Z. B. Yellin, J. V. Mil, L. Addadi, M. Idelson, M. Lahav, and L. Leiserowitz, “Crystal Morphology Engineering by”Tailor-Made”Inhibitors:A New Probe to Fine Intermolecular Interactions,” J. Am. Chem. Soc. 107(11) 1985
N. Blagden, R. J. Davey, H. F. Lieberman,L. William, R. Payne, R. Roberts, R. Rowe, and R. Docherty, “Crystal Chemistry and Solvent Effects in Polymorphic Systems Sulfathiazole,” J. Chem. Soc., Faraday Trans., 94(8), 1035-1044 (1998)
M. Lahav, and L. Leiserowitz, “The effect of Solvent on Crystal Growth and Morphology,” Chem. Eng. Sci. 56(7) 2245-2253 (2001)
D. Winn, and M. F. Doherty, “A New Technique for Predicting the Shape of Solution-Grown Organic Crystals,” AlChE J., 44(11), 2501-2514 (1998)
D. Winn, and M. F. Doherty, ”Modeling Crystal Shapes of Organic Materials Grown from Solution,” AlChE J., 46(7), 1348-1367 (2000)
S. Datta, and D. J. W. Grant, “Effect of Supersaturation on the Crystallization of Phenylbutazone,” Cryst. Res. Technol. 40(3) 233-242 (2005)
D. Gao ,and J. H. Rytting, “Use of Solution Calorimetry to Determine the Extent of Crystallinity of Drugs and Excipients,” Int. J. Pharm., 151(2) 183-192 (1997)
Y. Kong, and J. N. Hay, “The Enthalpy of Fusion and Degree of Crystallinity of Polymers as Measured by DSC,” Eur. Polym. J., 39(8), 1721-1727(2003)
R. Hilfiker, S. M. D. Paul, and M. Szelagiewicz, “Approaches to Polymorphism Screening,” chapter 11 of “Polymorphism: in the Pharmaceutical Industry,” R. Hilfiker, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, p.289 (2006)
C. K. Chen, and A. K. Singh, “A “Bottom-Up” Approach to process development: application of physicochemical properties of reaction products toward the development of direct-drop processes,” Org. Process Res. Dev., 5(5) 508-513 (2001)
A. M. Garcia, and E. S. Ghaly, “Preliminary spherical agglomerates of water soluble drug using natural polymer and cross-linking technique,” J. Control. Relea., 40(3) 179-186 (1996)
J. L. Hilden, C. E. Ryeyes, M. J. Kelm, j. S. Tan, J. G. Stowell, and K. R. Morris, “Capillary precipitation of a highly polymorphic organic compound,” Cryst. Growth. Des., 3(6) 921-926 (2003).
M. Lang, A. L. Grzesiak, and A. J. Matzgar, “The Use of polymer heteronuclei for crystalline polymorph selection,” J. Am. Chem. Soc., 124(50) 14834-14835 (2002)
W. W. Wang, and Y. J. Zhu, “Synthesis of PbCrO4 and Pb2CrO5 rods via a microwace-assisted ionic liquid methods,” Cryst. Growth. Des., 5(2) 505-507 (2005).
J. E. Aber, S. Arnold, and B. A. Garetz, “Strong dc electric field applied to supersaturated aqueous glycine solution induces nucleation of the γ polymorph,” Phys. Rev. Lett., 94(14) 145503 (2005).
L. S. Hing, and C. H. Chen, “Recent progress of Molecular Organic Electroluminescent Materials and Devices,” Mater. Sci. Eng., R 39(5-6), 143-222 (2002)
C. W. Tang, and S. A. VanSlyke,“Organic Electroluminescent Diodes,” Appl. Phys. Lett. 51 (12), 913-915 (1987)
M. Colle, R. E. Dinnebier and W. Brutting, “The Structure of the Blue Luminescent δ-phase of Tris(8-hydrocyquinoline)aluminium(III)(Alq3),” Chem. Commun., (23), 2908-2909. (2002)
K. A. Higginson, D. L. Thomsen III, B. Yang, and F. Papadimitrakopoulos, “Chemical Degradation and Physical Aging of Aluminum(III) 8-Hydroxyquinoline : Implications for Organic Light-Emitting Dioded and Materials Design,” Chapter 3 of “ Organic Light-Emitting Devices,” Joseph Shinar, Springer, New York, America, pp.87-88 (2003)
F. Papadimitrakopoulos, X. M. Zhang, and K. A. Higginson, “Chemical and Morphology Stability of Aluminum Tris(8-Hydroxyquinoline)(Alq3): Effects in Light-Emitting Devices,” IEEE J. Sel. Top. Quantum Electron., 4(1), 49-57 (1998)
M. Brinkmann, Gr. Gadret, M. Muccini, C. Taliani, N. Masciocchi, and A. Sironi, “Correlation between Molecular Packing and Optical Properties in Different Crystalline Polymorphs and Amorphous Thin Films of mer-Tris(8-hydroxyquinoline)aluminum(III),” J. Am. Chem. Soc. 122(21), 5147-5157 (2000)
M. Rajeswaran, T. N. Blanton, and K. P. Klubek, “Refinement of the Crystal Structure of the δ-modification of Tris(8-hydroxy-quinoline)aluminum(III), δ-Al(C9H6NO)3, the Blue Luminescent Alq3,” Zeitschrift fur Kristallograhie - New Crystral Stuctures , 218 , 439-440 (2003)
M. Rajeswaran, and T. N. Blanton, “Single-Crystal Structure Determination of a New Polymorph(ε-Alq3) of the Electroluminescence OLED (Organic Light-Emitting Diode) Material, Tris(8-hydroxyquinoline) Aluminum(Alq3),” J. Chem. Crystallogr., 35(1) ,71-76 (2005)
M. Cölle, J. Gmeiner, W. Milius, H. Hillebrecht, W. Brütting,” Preparation and Characterization of Blue-Luminescent Tris(8-hydroxyquinoline)-aluminum (Alq3),” Adv. Funct. Mater., 13(2), 108-112 (2003)
M. Brinkmann, G. Gadret, M. Muccini, C. Taliani, N. Masciocchi, and A. Sironi, “Correlation between Molecular Packing and Optical Properties in Different Crystalline Polymorphs and Amorphous Thin Films of mer-Tris(8-hydroxyquinoline)aluminum(III),” J. Am. Chem. Soc. 122(21); 5147-5157
R., Manju, and B., Thomas, “Single-crystal structure determination of a new polymorph ( -Alq3) of the electroluminescence OLED (organic light-emitting diode) material, tris(8-hydroxyquinoline)aluminum (Alq3),” J. Chem. Crystallogr., 35(1), 71-76 (2005)
M. Muccini, M. A. Loi, K. Kenevey, R. Zamboni, N. Masciocchi, and A. Sironi , “Blue Luminescence of Facial Tris(quinolin-8-olato)aluminum(III) in Solution, Crystals, and Thin Films,” Adv. Mater. 16(11), 861-864 (2004)
Y. K, Han, S. U. Lee, “Molecular Orbital Study on the Ground and Excited States of Methyl Substituted Tris(8-hydroxyquinoline) Aluminum(III),” Chem. Phys. Lett. 366(1) ,9-16 (2002)
T. –S. Kim, D. –H. Kim, H. –J. Im, K. Shimada, R. Kawajiri, T. Okubo, H. Murata, and T. Mitani, “Improved Lifetime of an OLED Using Aluminum(III) Tris(8-hydroxyquinolate),” Sci. Tech. Adv. Mater. ,5(3), 331-337 (2004)
J. Lewis, S. Grego, E. Vick, B. Chalamala, and D. Temple, Mechanical Performance of Thin Films in flexible Displays in Flexible Electronics 2004-Materials and Device Technology, edited by Norbert Fruehonf, Raba R. Chalanda, Bruce E. Grade, and Jin Jang (onates. , Res. Soc. Symp. Proc. 814(8), Wasreudale, PA, 2004) insert paper number I8.5.1-I5.5.10P.I8.5.1-I8.5.10
D. Berner, H. Houili, W. Leo, and L. Zuppiroli, “Insights into OLED Functioning through Coordinated Experimental Measurements and Numerical Model Simulations,” Phys. Status Solidi A, 202(1), 9-36 (2005)
M. Baldo, M. Deutsch, P. Burrows, H. Gossenberger, M. Gerstenberg, V. Ban, and S. Forrest, “Organic Vapor Phase Deposition,” Adv. Mater. 10(18), 1505-1514 (1998)
C. Jonda, A. B. R. Mayer, U. Stolz, A. Elschner, and A. Karbach, “Surface Roughness Effects and Their Influence on the Degradation of Organic Light Emitting Devices,” J. Mater. Sci. ,35(22), 5645-5651 (2000)
K. Zhang, F. Zhu, C.H.A. Huan, and A. T. S. Wee, “Indium Tin Oxide Films Prepared by Radio Frequency Magnetron Sputtering Method at a Low Processing Temperature,” Thin Solid Films ,376(1), 255-263 (2000)
W. Kowalsky, E. Becker, T. Benstem, T. Dobbertin, D. Heithecker, H. H Johannes, D. Metzdorf, and H. Neuner, “OLED Matrix Displays: Technology and Fundamentals,” IEEE , 20-28 (2001)
J. Laubender, L. Chkoda, M. Sokolowski, and E. Umbach, “The Influence of Oxygen and Air on the Characteristics of Organic Light-Emitting Devices Studied by in Vacuum measurements,” Synth. Met. ,111-112, 373-376 (2000)
V. E. Choong, Y. Park, N. Shivaparan, C. W. Tang, and Y. Gao, “Deposition-Induced Photoluminescence Quenching of Tris-(8-hydroxyquionline) Aluminum,” Appl. Phys. Lett. 71(8), 1005-1007, (1997)
C. H. Huang, S. H. Yang, K. B. Chen, and C. S. Hsu, “Synthesis and Light Emitting Properties of Polyacetylenes Having Pendent Fluorescence Groups,” J. Polym. Sci., Part A: Polym. Chem., 44(1), 519-531 (2006)
A. Sugimoto, H. Ochi, S. Fujimura, A. Yoshida, T. Miyadera, and M. Tsuchida, “Flexible OLED Displays Using Plastic Substrates,” IEEE J. Sel. Top. Quantum Electron. , 10(1), 107-114 (2004)
D. Bedrov, G. D. Smith, and T. D. Sewell,” Molecular Dynamics Simulations of HMX Crystal Polymorphs Using a Flexible Molecule Force Field,” J. Comput. Aided Mater. Des. 8(2) 77-85 (2001)
P. H. Buffat, and J. -P. Borel, “Size Effect on the Melting Point Temperature of Gold Particles,” Phys. Rev. A , 13(6), 2287-2298 (1976)
K. K. Nanda, “Bulk Cohesive Energy and Surface Tension from the Size-Dependent Evaporation Study of Nanoparticles,” Appl. Phys. Lett. 87(2) 21909-1-21909-3 (2005)
G. Foti, “Silicon Carbide: from Amorphous to Crystalline Material,” Appl. Surf. Sci., 184(1), 20-26 (2001)
D. A. Pardo, N. Peyghambarian, and G. E. Jabbour, “In Situ Purification of Organic Materials for Organic Light-Emitting Device Fabrucation,” Jpn. J. Appl. Phys., 40(8), 4922-4923 (2001)
M. Mirmehrabi, and S. Rohani, “An Approach to Solvent Screening for Crystallization of Polymorphic Pharmaceuticals and Fine Chemicals,” J. Pharm. Sc., 94(7), 1560-1576 (2005)
J. W. Mullin, “Solution and Solubility”, Chapter 3 in “Crystallization,” Third edition, Butterworth-Heinemann, London, England, pp.82-84, (1997)
J. Shinar, and V. Savvateev, “Introduction to Organic Light-Emitting Devices”, Chapter 1 of “ Organic Light-Emitting Devices,” Joseph Shinar, Springer, New York, USA, pp.31-34 (2003)
M. Mirmehrabi, and S. Rohani, “An Approach to Solvent Screening for Crystallization of Polymorphic Pharmaceuticals and Fine Chemicals,” J. Pharm. Sci., 94(7), 1560-1576 (2005)
L. Pavia, G. M. Lampman, and G. S. Kriz, “Introduction to Spectroscopy,” Third Edition ,Brooks/COLE Thomson Learning, pp.54-56 (2001)
N. B. Colthup, L. H. Daly, and S. E. Wiberley, ”Introduction to Infrared and Raman Spectroscopy,” Third Edition, Academic press Inc, pp. 282, 347, and 349 (1990)
D. L. Pavia, G. M. Lampman, and G. S. Kriz, “Introduction to spectroscopy,” Third Edition ,Brooks/COLE Thomson Learning, p.41 (2001)
H. Li, F. Zhang, Y. Wang, and D. Zheng, “Synthesis and Characterization of Tris-(8-hydroxyquinoline)aluminum,” Mater. Sci. Eng., B100(1), 40-46 (2003)
P. J. Haines, “Thermal Methods of Analysis – Principles, Applications and Problems,” Blackie Acadmic & Professional, p.89 (1995)
K. A. Higginson, D. L. Thomsen III, B. Yang, and F. Papadimitrakopoulos, “Chemical Degration and Physical Aging of Aluminum(III) 8-Hydroxyquinoline : Implications for Organic Light-Emitting Dioded and Materials Design,” Joseph Shinar, Springer, New York, America, p.87 (2003)
S. Petit and G. Coquerel, “The Amorphous State,” chapter 10 of “Polymorphism: in the Pharmaceutical Industry,” R. Hilfiker, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp.259-269 (2006)
C. J. Price, “Take Some Solid Steps to Improve Crystallization,” Chem. Eng. Prog., 93(9), 34-43 (1997)
S. Datta and D. J. W. Grant, “Effect of Supersaturation on the Crystallization of Phenylbutazone,” Cryst. Res. Technol., 40(3) 233-242 (2005)
A. Y. Lee, A. Ulman, and A. S. Myerson, “Crystallization of Amino Acids on Self-Assembled Monolayers of Rigid Thiols on Gold,” Langmuir, 18 (15), 5886 -5898, (2002)
Gunnison, K. E., Sarikaya, M., and Aksay, I. A., “Structure-Mechanical Property Relationships in a Biological Ceramic-Polymer Composite: Nacre,” Mat. Res. Soc. Proc. 255, 171-183 (1992)
C. M. Zaremba, A. M. Belcher, “Critical Transitions in the Biofabrication of Abalone Shells and Flat Pearls,” Chem. Mater., 8(3) 679-690 (1996)
Feng Yi, Zhao-Xia Guo, Ping Hu, Zhuang-Xi Fang, Jian Yu, Qiang Li, “Mimetics of Eggshell Membrane Protein Fibers by Electrospinning,” Macromol. Rapid Commun., 25(10), 1038-1043 (2004)
Y. Oaki, A. Kotachi, T. Miura, H. Imai, “Bridged Nanocrystals in Biominerals and Their Biomimetics: Classical Yet Modern Crystal Growth on the Nanoscale,” Adv. Funct. Mater., 16(11), 1633-1639 (2006)
D. Yang , L. Qi and J. Ma, “Eggshell Membrane Templating of Hierarchically Ordered Macroporous Networks Composed of TiO2 Tubes,” Adv. Mater., 14(21), 1543-1546 (2002)
T. Nakano, N. I. Ikawa, and L. Ozimek, ” Chemical Composition of Chicken Eggshell and Shell Membranes,” Poult. Sci. ,82(3), 510-514 (2003)
R. Hiremath, J. A. Basile, S. W. Varney, and J. A. Swift, “Controlling Molecular Crystal Polymorphism with Self-Assembled Monolayer Templates,” J. Am. Chem. Soc., 127 (51), 18321 -18327, (2005)
J. U. Nielsen, M. J. Esplandiu, and D. M. Kolb, “4-Nitrothiophenol SAM on Au(111) Investigated by in Situ STM, Electrochemistry, and XPS,” Langmuir, 17 (11), 3454 -3459, (2001)
F. Zeng and S. C. Zi,,erman, “ Dendrimers in Supramolecular Chemistry: from Molecular Recognition to Self-assembly,” Chem. Rev. 97(5), 1681-1712 (1997)
J. Lee, B. –J. Jung, J. –I. ()Lee, H. Y. Chu, L. –M. Do and H. –K. Shim, “Modification of an ITO Anode with a Hole-Transporting SAM for Improved OLED Device Characteristics,” J. Mater. Chem., 12(12), 3494-3498 (2002)
L. S. Hing and C. H. Chen, “Recent Progress of Molecular Organic Electroluminescent Materials and Devices,” Mater. Sci. Eng., R 39(5-6), 143-222, (2002)
A. L. Efros and M. Rosen, “Nonlinear Optical Effects in Porous Silicon:Photoluminescence Saturation and Optically Induced Polarization Anisotropy,” Ame. Phys. Soc. Phy.l Rev. B, 56(7), 3875-3884, (1997)
R. A. Hatton, M. R. Willis, M. A. Chesters, F. J. M. Rutten and D. Briggs, “Enhanced Hole Injection in Organic Light-emitting Diodes Using a SAM-Derivatised Ultra-thin Gold Anode Supported on ITO Glass,” J. Mater. Chem,13(1), 38-43 (2003)
T. –S. Kim, D. –H. Kim, H. –J. Im, K. Shimada, R. Kawajiri, T. Okubo, H. Murata, T. Mitani, “Improved Lifetime of an OLED Using Aluminum(III) Tris(8-hydroxyquinolate),” Sci. Tech. Adv. Mater. ,5(3), 331-337 (2004)
F. Nüesch, F. Rotzinger, L. Si-Ahmed and L. Zuppiroli, “Chemical Potential Shifts at Organic Device Electrodes Induced by Grafted Monolayers,” Chem. Phys. Lett., 288(5), 861–867 (1998)
P. K. H. Ho, M. Granström, R. H. Friend and N. C. Greenham, “Ultrathin Self-Assembled Layers at the ITO Interface to Control Charge Injection and Electroluminescence Efficiency in Polymer Light-Emitting Diodes,” Adv. Mater., 10(10), 769–774 (1998)
R. A. Hatton, S. R. Day, M. A. Chesters and M. R. Willis, “Organic Electroluminescent Devices: Enhanced Carrier Injection Using an Organosilane Self- Assembled Monolayer (SAM) Derivatized ITO Electrode,” Thin Solid Films, 394, 292–297 (2001)
M. Carrard, S. Goncalves-Conto, L. Si-Ahmed, D. Adès and A. Siove, “Improved Stability of Interfaces in Organic Light Emitting Diodes with High Tg Materials and Self-Assembled Monolayers,” Thin Solid Films, 352, 189–194 (1999)
J. Song, X. Wang, E. Riedo, and Z. L. Wang, “Systematic Study on Experimertal Conditions for Large-scale Growth of Aligned ZnO Nanowires on Nitrides,” J. Phys. Chem. B, 109(20),9869-9872 (2005)
J. –K. Lee, W. –K. Koh, W. -S. Chae and Y. –R. Kim, “Novel Synthesis of Organic Nanowires and Their Optical Properties,” Chem. Commun.,1(2), 138-139 (2002)
H. Pan, S. Lim, C. Poh, H. Sun, X. Wu, Y. Feng and J. Lin, “Growth of Si Nanowires by Thermal Evaporation,” Nanotech., 16(4), 417-421 (2005)
M. Yan, H. T. Zhang, E. J. Widjaja, and R. P. H. Chang, “Self-Assembly of Well-Alligned Gallium-Doped Zinc Oxide Nanorods,” J. Appl. Phys. ,94(8),5240-5246 (2003)
Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-Dimensional Nanostructures: Synthesis, Characterization, and Applications,” Adv. Mater., 15(5), 353-389 (2003)
M. Brinkmann, Gr. Gadret, M. Muccini, C. Taliani, N. Masciocchi, and A. Sironi, “Correlation between Molecular Packing and Optical Properties in Different Crystalline Polymorphs and Amorphous Thin Films of mer-Tris(8-hydroxyquinoline)aluminum(III),” J. Am. Chem. Soc. 122(21), 5147-5157 (2000)
M. Rajeswaran, T. N. Blanton and K. P. Klubek, “Refinement of the Crystal Structure of the δ-modification of Tris(8-hydroxy-quinoline)aluminum(III), δ-Al(C9H6NO)3, the Blue Luminescent Alq3,“ Zeitschrift fur Kristallograhie - New Crystral Stuctures , 218(4) , 439-440 (2003)
M. Cölle, J. Gmeiner, W. Milius, H. Hillebrecht, W. Brütting,” Preparation and Characterization of Blue-Luminescent Tris(8-hydroxyquinoline)-aluminum (Alq3),” Adv. Funct. Mater., 13(2), 108-112 (2003)
M. Rajeswaran and T. N. Blanton, “Single-Crystal Structure Determination of a New Polymorph(ε-Alq3) of the Electroluminescence OLED (Organic Light-Emitting Diode) Material, Tris(8-hydroxyquinoline) Aluminum(Alq3),” J. Chem. Crystallogr., 35(1) ,71-76 (2005)
L. S. Hing and C. H. Chen, “Recent Progress of Molecular Organic Electroluminescent Materials and Devices,” Mater. Sci. Eng., R 39(5-6), 143-222 (2002)
R. Hilfiker, “Polymorphism in the Pharmaceutical Industry,” Wiley-vch, Weinheim, Germany, 2006: p289
A. Ulman, “Formation and Structure of Self-Assembled Monolayers,” Chem. Rev., 96(4), 1533-1554 (1996)
C. P. Cho, C. Y. Yu, and T. P. Perng, “Growth of Alq3 Nanowires Directly from Amorphous Thin Film and Nanoparticles,” Nanotechnology, 17(21), 5506-5510 (2006)
N. B. Colthup, L. H. Daly, and S. E. Wiberley, ”Introduction to Infrared and Raman Spectroscopy,” Third Edition, Academic press Inc, pp. 282 (1990)
N. B. Colthup, L. H. Daly, and S. E. Wiberley, ”Introduction to Infrared and Raman Spectroscopy,” Third Edition, Academic press Inc, pp. 315-316 (1990)
D. L. Pavia, G. M. Lampman, G. S. Kriz, “Infrared Spectroscopy,” Chap.2of Introduction to spectroscopy, Third Edition ,Brooks/COLE Thomson Learning, Washington, USA, pp.45-47 (2001)
A. Aumelas, C. Sakarellos, K. Lintner, S. Fermandlian, M. C. Khosla, R. R. Smeby, and F. M. Bumpus, “Studies on Angiotensin II and Analogs: Impact of Substitution in Position 8 on Conformation and Activity,” Proc. Natl. Acad. Sci., 82(7), 1881-1885 (1985)
X. T. Zhang, Z. Liu, Y. P. Leung, Q. Li, and S. K. Hark, “Growth and Luminescence of Zinc-Blende-Structured ZnSe Nanowires by Metal-Organic Chemical Vapor Deposition,” Appl. Phys. Lett., 83(26) 5533-5535 (2003)
B. Na, R. L. Webb, “A Fundamental Understanding of Factors Affecting Frost Nucleation,” Int. J. Heat Mass Transfer ,46(20), 3797-3808 (2003)
J. Liu, M. Sarikaya, and I. A. Aksay, “A Hierarchically Structures Model Composite: A TEM Study of the Hard Tissue of Red Abalone,” Mat. Res. Soc. Symp. Proc., 255, 9-17 (1992)
S. Mann, B. R. Heywood, S. Rajam, and J. D. Birchall, “Controlled Crystallization of CaCO3 under Stearic Acid Monolayers,” Nature, 334(6184), 692-695 (1988)
S. K. Srivastava, V.D. Vankar, and V. Kumar, “Growth and Microstructures of Carbon Nanotube Films Prepared by Microwave Plasma Enhanced Chemical Vapor Deposition Process,” Thin Solid Films, 515(4), 1552-1560 (2006)
J. Proost and S. V. Boxed, “Large-Scale Synthesis of High-Purity, One-Dimensional α-Al2O3 Structures,” J. Mater. Chem., 14(20),, 3058-3062 (2004)
Y. Zhang, H. Jia, X. Luo, X. Cheng, D. Yu, and R. Wang, “Synthesis, Microstructure, and Growth Mechanism of Dendrite ZnO Nanowires,“ J. Phys. Chem. B, 107(33), 8289-8293 (2003)
L. Y. Zhang, G. F. Liu, S. L. Zheng, B. H. Ye, X. M. Zhang, and X. M. Chen “Helical Ribbons of Cadmium(II) and Zinc(II) Dicarboxylates with Bipyridyl-Like Chelates - Syntheses, Crystal Structures and Photoluminescence,” Eur. J. Inorg. Chem., 2003(16), 2965-2971 (2003)
C. A. Hunter, :Meldola Lecture: The Role of Aromatic Interactions in Molecular Recognition,” Chem. Soc. Rev., 23(2), 101-109 (1994)
Y. K. Han and S. U. Lee, “Molecular Orbital Study on the Ground and Excited States of the Methyl Substituted Tris(8-hydroxyquinoline) aluminum(III)”, Chem. Phys. Lett. 366(1), 9-16 (2002)
C. J. Yang, T. L. Sheng, Q. Y. Cao, D. C. Zou, C. Yi and X. C. Gao, “Synthesis, Crystallography, Photoluminescence and Electroluminescence of Three Polymorphs of Dibenzoylmethane Gallium Complex,” Inorg. Chim. Acta, 360(5), 1593-1598 (2007)
Chemical Degradation and Physical Aging of Aluminum(III) 8-Hydroxyquinoline : Implications for Organic Light-Emitting Dioded and Materials Design”, Chapter 3 of “ Organic Light-Emitting Devices,” Joseph Shinar, Springer, New York, America, pp.87-88 (2003)
M. Colle, R. E. Dinnebier and W. Brutting, “The Structure of the Blue Luminescent δ-phase of Tris(8-hydrocyquinoline)aluminium(III)(Alq3),” Chem. Commun., (23), 2908-2909. (2002)
L. S. Hing and C. H. Chen, “Recent Progress of Molecular Organic Electroluminescent Materials and Devices,” Mater. Sci. Eng., R 39(5-6), 143-222 (2002)
C. W. Tang and S. A. VanSlyke,“Organic Electroluminescent Diodes,” Appl. Phya. Lett., 51 (12), 913-915 (1987)
M. Cölle, J. Gmeiner, W. Milius, H. Hillebrecht, W. Brütting,” Preparation and Characterization of Blue-Luminescent Tris(8-hydroxyquinoline)-Aluminum (Alq3),” Adv. Funct. Mater., 13(2), 108-112 (2003)
D. A. Pardo, N. Peyghambarian and G. E. Jabbour, “In Situ Purification of Organic Materials for Organic Light-Emitting Device Fabrication,” Jpn. J. Appl. Phys., 40(8), 4922-4923 (2001)
J. R. Sheats, H. Antoniadis, M. Hueschen, W. Leonard, J. Miller, R. Moon, D. Roitman, and A Stocking, “Organic Electroluminescent Devices,” Science 273(5277), 884-888 (1996)
Sumsung SFI, IMID2004
J. Gurski ,and L. M. Quach, LYTICA WHITE PAPER, July 1(2005), Available HTTP:http://www.lytica.com/content/files/Documents/WhitePapers/Display%20Technology%20Overview.pdf
K. S. Fang, and J. W. Hong, “Polymer Light-Emitting Diodes with Composition-Grades Amorphous Silicon-Alloy Electron Injection and Hole Buffer Layers,” Master Dissertation, Institute of Electrical Engineering, National Central University, pp.1-71 (2004)
Z. Chen, K. Ogino, S. Miyata, Y. Lu and T. Watanabe, “The Pure White Light Emission from Three-Layer Electroluminescent Device,” J. Phys. D:Appl. Phys. 35(8) ,742-746 (2002)
C. Jonda, A. B. R. Mayer, U. Stolz, A. Elschner, and A. Karbach, “Surface Roughness Effects and Their Influence on the Degradation of Organic Light Emitting Devices,” J. Mater. Sci. ,35(22), 5645-5651 (2000)
T. S. Kim, D. H. Kim, H. J. Im, K. Shimada, R. Kawajiri, T. Okubo, H. Murata, and T. Mitani, “Improved Lifetime of an OLED Using Aluminum(III) Tris(8-hydroxyquinolate),” Sci. Tech. Adv. Mater. ,5(3), 331-337 (2004)
J. Lewis, S. Grego, E. Vick, B. Chalamala, and D. Temple, Mechanical Performance of Thin Films in flexible Displays in Flexible Electronics 2004-Materials and Device Technology, edited by Norbert Fruehonf, Raba R. Chalanda, Bruce E. Grade, and Jin Jang (onates. , Res. Soc. Symp. Proc. 814(8), Wasreudale, PA, 2004) insert paper number I8.5.1-I5.5.10P.I8.5.1-I8.5.10
D. Berner, H. Houili, W. Leo, and L. Zuppiroli, “Insights into OLED Functioning through Coordinated Experimental Measurements and Numerical Model Simulations,” Phys. Status Solidi A, 202(1), 9-36 (2005)
F. Papadimitrakopoulos, X. M. Zhang, and K. A. Higginson, “Chemical and Morphology Stability of Aluminum Tris(8-Hydroxyquinoline)(Alq3): Effects in Light-Emitting Devices,” IEEE J. Sel. Top. Quantum Electron., 4(1), 49-57 (1998)
M. Baldo, M. Deutsch, P. Burrows, H. Gossenberger, M. Gerstenberg, V. Ban, and S. Forrest, “Organic Vapor Phase Deposition,” Adv. Mater. 10(18), 1505-1514 (1998)
C. Jonda, A. B. R. Mayer, U. Stolz, A. Elschner, and A. Karbach, “Surface Roughness Effects and Their Influence on the Degradation of Organic Light Emitting Devices,” J. Mater. Sci. ,35(22), 5645-5651 (2000)
J. W. Mullin, “Crystallization,” Paperback edition, Butterworth-Heinemann, pp.172-188 (1997)
H. Li, F. Zhang, Y. Wang, and D. Zheng, “Synthesis and Characterization of Tris-(8-hydroxyquinoline)aluminum,” Mater. Sci. Eng., B100(1), 40-46 (2003)
M. Brinkmann, Gr. Gadret, M. Muccini, C. Taliani, N. Masciocchi, and A. Sironi, “Correlation between Molecular Packing and Optical Properties in Different Crystalline Polymorphs and Amorphous Thin Films of mer-Tris(8-hydroxyquinoline)aluminum(III),” J. Am. Chem. Soc. 122(21), 5147-5157 (2000)
M. Rajeswaran, T. N. Blanton, and K. P. Klubek, “Refinement of the Crystal Structure of the δ-modification of Tris(8-hydroxy-quinoline)aluminum(III), δ-Al(C9H6NO)3, the Blue Luminescent Alq3,“ Zeitschrift fur Kristallograhie - New Crystral Stuctures , 218 , 439-440 (2003)
M. Rajeswaran ,and T. N. Blanton, “Single-Crystal Structure Determination of a New Polymorph(ε-Alq3) of the Electroluminescence OLED (Organic Light-Emitting Diode) Material, Tris(8-hydroxyquinoline) Aluminum(Alq3),” J. Chem. Crystallogr., 35(1) ,71-76 (2005)
K. A. Higginson, D. L. ThomsenIII, B. Yang, and F. Papadimitrakopoulos, “Chemical Degradation and Physical Aging of Aluminum(III) 8-Hydroxyquinoline: Implications for Organic Light-Emitting Diodes and Materials Design” Chapter 3 of “Organic Light-Emitting Devices”, J. Shinar, Springer, New York, USA, pp.96-98 (2003)
J. Shinar and V. Savvateev, “Introduction to Organic Light-Emitting Devices,” Chapter1 of “Organic Light-Emitting Devices,” J. Shinar, Springer, New York, USA, pp.15-17 (2003)
指導教授 李度(Tu Lee) 審核日期 2007-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明