博碩士論文 963209013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:164 、訪客IP:3.141.244.201
姓名 許雅萍(Ya-ping Hsu)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 以旋轉塗佈法製備氧化鐵與摻雜白金氧化鐵光電極應用於太陽能產氫系統之研究
(The spin coating method is used prepare undoped and Pt-doped iron oxide thin films as a photoelectrodes for photoelectrochemical production hydrogen)
相關論文
★ 定開孔率下流道設計與疏水流場對質子交換膜燃料電池之性能影響★ 熱風循環烘箱熱傳特性研究
★ 以陽極處理製備奈米結構之氧化鐵光觸媒薄膜應用在光電化學產氫★ 規則多孔碳應用在燃料電池陰極觸媒擔體之研究
★ 鉑錫/多孔碳觸媒應用於燃料電池陰極反應之研究★ 腐蝕特性對金屬多孔材質子交換膜燃料電池性能影響之研究
★ 碎形理論應用在質子交換膜燃料電池中氣體擴散層熱傳導係數之研究★ 中溫固態氧化物燃料電池複合系統分析
★ 中文質子傳輸型固態氧化物燃料電池陽極之研究★ 鋯摻雜鋇鈰釔氧化物微結構與電化學特性之研究
★ 發展應用脈衝雷射沉積製備奈米顆粒堆疊多孔觸媒層與滴塗聚苯並咪唑介面層製作高溫型質子交換膜燃料電池★ 熱塑性聚胺酯複合材料製備燃料電池 雙極板之研究
★ 以穿刺實驗探討鋰電池安全性之研究★ 金屬多孔材應用於質子交換膜燃料電池內流道的研究
★ 不同表面處理之金屬發泡材於質子交換膜燃料電池內的研究★ PEMFC電極及觸媒層之電熱流傳輸現象探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文選用溶膠凝膠以及旋轉塗佈法製備氧化鐵半導體的光電極,應用於光電化學產氫系統,嘗試摻雜白金於半導體薄膜中,期望製作出高光電流與高光電轉換效率的薄膜電極。α-氧化鐵擁有2.2eV的低能隙氧化物,能夠吸收波長564nm以下的能量,此波長範圍的能量約佔太陽能量中的30%,吸收範圍包含可見光和紫外光,又因為氧化物有極佳穩定性,可以抵抗光曝曬和化學的腐蝕,符合長久使用。而溶膠凝膠法調配前驅物可降低成本並且製作過程方便,以旋轉塗佈製備出氧化鐵薄膜。本研究嘗試改變旋轉塗佈的轉速、熱處理溫度和氣氛、和白金的摻雜量,以探討出製備的氧化鐵光電極的結晶結構、光學性質、和光電化學性質。由XRD和XPS檢測可得知,在空氣和氧氣熱處理溫度為500℃有α相氧化鐵結構,在波長550nm時,吸收率可達到50%,間接能隙約為2.02 eV、2.00eV;在光電化學反應下,電解液為K2SO3施加偏壓為0.5V,光暗電流差為0.50mA/cm2、0.37 mA/cm2。摻雜白金於氧化鐵薄膜,有提升氧化鐵的結晶性,由XRD和SEM得知晶粒大小有明顯下降,間接能隙為1.98-2.03eV;當摻雜量0.1at%白金,在偏壓為0.5V時,光暗電流差為0.70 mA/cm2。
摘要(英) In this study, the sol-gel and spin coating methods are used to prepare α-Fe2O3 thin film that is used as a photoelectrode for photoelectrochemical (PEC) production of hydrogen. Effects of platinum (Pt) doping are also studied. α-Fe2O3 has a narrow band gap of 2.2eV; it can absorb solar insolation of wavelength smaller than 564 nm, which accounts for approximately 30% of solar insolation. Furthermore, α-Fe2O3 is a stable oxide. It has a good resistance against light exposure and chemical corrosion, and therefore it has a long lifetime.
The sol-gel method is a simple and low-cost method for precursor preparation. The resulting gel is deposited on FTO by spin coating. In this study, the effects of spin rate, heat treatment temperature and atmosphere, and the doping amount of Pt in iron oxide on the crystal structure, morphology, optic property, and PEC performance are investigated.
The results of XRD and XPS show that α-Fe2O3 can be obtained using 500oC annealing in air or oxygen. At 500 nm, the iron oxide film has a thickness of 228 nm, a band gap of 2.02 eV, and an absorptance of 50 %. As for the PEC performance, the measured photocurrent density is 0.50 mA/cm2 for the undoped iron oxide film with a bias voltage of 0.5V(V vs. Ag/AgCl). Doping of Pt can enhance the crystalline of iron oxide. Increasing the Pt amount reduces the grain size and band gap. With a bias voltage of 0.5V(V vs. Ag/AgCl), the photocurrent density is 0.7 mA/cm2 for the 0.1%-Pt-doped film.
關鍵字(中) ★ 掺雜白金
★ 氧化鐵薄膜
★ 旋轉塗佈
★ 光電化學產氫
關鍵字(英) ★ Pt doping
★ iron oxide thin film
★ spin coating
★ photoelectrochemical production of hydrogen
論文目次 中文摘要Ⅰ
英文摘要Ⅱ
致謝Ⅲ
目錄Ⅴ
圖目錄Ⅷ
表目錄XI
一、 緒論
1.1 研究背景1
1.2 研究動機2
1.3 研究目標2
二、 研究理論與文獻回顧
2.1 奈米材料4
2.2 光觸媒4
2.3 光電化學系統6
2.4 光電極特性8
2.4.1 能隙8
2.4.2 平帶電位11
2.4.3 抗腐蝕12
2.4.4 光轉換效率13
2.5 溶膠凝膠和旋轉塗佈13
2.6 氧化鐵結構17
2.7 文獻整理19
三、 實驗步驟
3.1 實驗流程與實驗規劃23
3.2 電極製作24
3.2.1 基材準備24
3.2.2 前驅物調配24
3.2.3 旋轉塗佈26
3.2.4 熱處理27
3.2.5 電極封裝29
3.3 性質分析29
3.3.1 X-ray繞射儀.29
3.3.2 光譜儀30
3.3.3 恆電位儀32
3.3.3.1 平帶電位32
3.3.3.2 光電流密度33
3.3.4 薄膜厚度輪廓儀34
3.3.5 場發式電子顯微鏡35
3.3.6 X射線光電子能譜儀35
四、 結果分析與討論
4.1 氧化鐵薄膜37
4.1.1 轉速對氧化鐵的影響37
4.1.2 熱處理溫度對氧化鐵的影響56
4.2 摻雜白金對氧化鐵的影響72
五、 結論和未來工作規劃
5.1 結論84
5.2 未來工作建議85
參考文獻86
參考文獻 1. “Prospects for hydrogen and fuel cells”, International Energy Agency(2005).
2. 曹茂盛,材料科學導論,學富文化事業有限公司,pp.7-39,81-128,台北。
3. 宋國輝,太陽光電產氫反應器中MnxTi1-xO2薄膜電極之研究,國立中央大學材料科學與工程研究所碩士論文,桃園(2007)。
4. 荘浩宇,陳東煌,取之不盡的太陽能光電化學反應,科學發展,437期(2009)。
5. 林有銘,無所不在的環境清潔工奈米光觸媒,科學發展,402期(2006)。
6. A. Fujishima, K. Honda, “Electrochemical photocatalysis of water at a semiconductor electrode”, Nature, Vol. 238, pp.37-38 (1972).
7. T. Bak, J. Nowotny, M. Rekas, C.C. Sorrell, “ Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects”, International Journal of Hydrogen Energy, Vol.27, pp.991-1022(2002).
8. A. Bott, “Electrochemistry of semiconductors “, Current Separations, Vol. 17, pp.87-91(1998).
9. R.V.D. Krol, Y. Liang, J. Schoonman, “Solar hydrogen production with nanostructured metal oxides”, Journal of Materials Chemistry, Vol.18, pp.2311-2320(2008).
10. A.B. Murphy, P.R.F. Barnes, L.K. Randeniya, I.C. Plumb, M.D. Horne, J.A. Glasscock, “Efficiency of solar water splitting using semiconductor electrodes”, International Journal of Hydrogen Energy, Vol.31, pp.1999-2017(2006).
11. 黃忠義,奈米多孔性材料之製備,國立中央大學化學工程與材料工程研究所碩士論文,桃園(2003)。
12. 黃柏翔,利用離子槍濺鍍系統製備氧化鐵薄膜及其在穿遂式磁阻效應,國立清華大學材料科學工程研究所碩士論文,新竹(2003)。
13. N. Iordanova, M. Dupuis, K. M. Rosso, ”Charge transport in metal oxides: a theoretical study of hematite α-Fe2O3”, Journal of Chemical Physics, Vol.122, pp.144305-1,10(2005).
14. K.S. Alan, Y.S. Hu, A.J. Forman, G.D. Stucky, E. W. McFarland, “ Electrodeposition of α-Fe2O3 doped with Mo or Cr as photoanodes for photocatalytic”, Journal of Physical Chemistry C, Vol.112, pp.15900-15907(2008).
15. V.M. Aroutiounian, V.M. Arakelyan, G.E. Shahnazaryan, G.M. Stepanyan, E.A. Khachaturyan, J.A. Turner, C.R. Chimie, ”Investigations of the structure of the iron oxide semiconductor-electrolyte interface”, Vol.9, pp.325-331(2006).
16. J.H. Kennedy,K.W. Frese, Jr, “Photooxidation of water at α-Fe2O3 electrodes”, Journal of the Electrochemical Society, Vol.125, pp.709-714(1978).
17. R.S. Sonawane, B.B. Kale, M.K. Dongare, “Preparation and photo-catalytic activity of Fe-TiO2 thin film prepared by sol-gel dip coating”, Materials Chemistry and Physics, Vol.85, pp.52-57(2004).
18. X.Z. Li, F.B. Li, “Study of Au/Au3+-TiO2 photocatalysts toward visible photooxidation for water and wastewater treatment”, Environmental Science and Technology, Vol.35, pp.2381-2387(2001).
19. S. Kim, S.J. Hwang, W. Choi, “Visible light active platinum-ion-doped TiO2 photocatalyst”, The Journal of Physical Chemistry B, Vol.109, pp.24260-24267(2005).
20. C. Santato, M. Ulmann, J. Augustynski, “Enhanced visible light conversion efficiency using nanocrystalline WO3 films”, Advanced Materials, Vol.13, pp.511-514(2001).
21. M. Gupta, V. Sharma, J. Shrivastava, A. Solanki, A.P. Singh, V.R. Satsangi, S. Dass, R. Shrivastav, ”Preparation and characterization of nanostructured ZnO thin film for photoelectrochemical splitting of water”, Bulletin of Materials Science, Vol.32, pp.23-30(2009).
22. J. Yin, J. Ye, “Enhanced photoelectrolysis of water with photoanode Nb:SrTiO3”, Applied Physics Letters, Vol.85, pp.689-691(2004).
23. J.H. Kennedy, K.W. Frese, Jr., ”Flatband potentials and donor densities of polycrystalline α-Fe2O3 determined from mott-schottky plots”, Journal of the Electrochemical Society, Vol.125, pp.709-714(1978).
24. U.M. Khan,J. Akikusa , “Photoelectrochemical splitting of water at nanocrystalline n-Fe2O3 thin-film electrodes”, Journal of Physical Chemistry B, Vol.103, pp.7184-7189(1999).
25. M. Rajendran, M.G. Krishna, A.K. Bhattacharya, “Structure and thickness dependent optical properties of nanocrystalling haematite thin films”, International Journal of Modern Physics B, Vol.15, pp.201-208(2001).
26. P. Chauhan, S. Annapoorni, S.K. Trikha, “Preparation characterization and optical properties of α-Fe2O3 films by sol-spinning process”, Bulletin of Materials Science, Vol.21, pp.381-385(1998).
27. V.R. Satsangi, S. Kumari, A.P. Singh, R. Shrivastav, S. Dass, “Nanostructured hematite for photoelectrochemical generation of hydrogen”, International Journal of Hydrogen Energy, Vol.33, pp.312-318(2008).
28. L.S. Flavio, P.L. Kirian, A.P. Nascente, R.L. Edson, “Nanostructured hematite thin films produced by spin-coating deposition solution: application in water splitting”, Solar Energy Materials & Solar Cell, Vol.93, pp.362-368(2009).
29. V.M. Aroutiounian, V.M. Arakelyan, G.E. Shahnazaryan, G.M. Stepanyan, E.A. Khachaturyan, H. Wang, J.A. Turner, “Photoelectrochemistry of semiconductor electrodes made of Solid solutions in the system Fe2O3-Nb2O5”, Solar Energy, Vol.80, pp.1098-1111(2006).
30. V.M. Aroutiounian, V.M. Arakelyan, G.E. Shahnazaryan, H.R. Hovhannisyan, H. Wang, J.A. Turner, “Photoelectrochemistry of tin-doped iron oxide electrodes”, Solar Energy, Vol.81, pp.1369-1376(2007).
31. V.M. Aroutiounian, V.M. Arakelyan, G.E. Shahnazaryan, G..M. Stepanyan, J.A. Turner, O. Khaselev, “Investigation of ceramic Fe2O3(Ta) photoelectrodes for solar energy photoelectrochemical converters”, International Journal of Hydrogen Energy, Vol.27, pp.33-38(2002).
32. A. Kay, I. Cesar, M. Gratzel, “New benchmark for water photooxidation by nanostructured α-Fe2O3 films”, Journal of the American Chemical Society, Vol.128, pp.15714-15721(2006).
33. W. Luo, T. Yu, Y. Wang, Z. Li, J. Ye, Z. Zou, “Enhanced photocurrent-voltage characteristics of WO3/Fe2O3 nano-electrodes”, Journal of Physics D: Applied Physics, Vol.40, pp.1091-1096(2007).
34. Y. Wang, T. Yu, X. Chen, H. Zhang, S. Ouyang, Z. Li, J. Ye, Z. Zou, “Enhancement of photoelectric conversion properties of SrTiO3/α-Fe2O3 heterojunction photoanode”, Journal of Physics D: Applied Physics, Vol.40, pp.3925-3930(2007).
35. C.J. Sartoretti, B.D. Alexander, R. Solarska, I.A. Rutkowska, J. Augustynski, “Photoelectrochemical oxidation of water at transparent ferric oxide film electrodes”, The Journal of Physical Chemistry B,Vol.109, pp.13685-13692(2005).
36. Y.S. Hu, K.S. Alan, A.J. Forman, D. Hazen, J.N. Park, E.W. McFarland, “Pt-doped α-Fe2O3 thin films active for photoelectrochemical water splitting”, Chemistry of Materials Science, Vol.20, pp.3803-3805(2008).
37. 鄧永門,溶膠凝膠法製備氧化鐵與掺鋅氧化鐵薄膜應用於光電化學產氫電極之研究,國立中央大學材料科學與工程研究所碩士論文,桃園(2008)。
38. J.C. Manifacier, M.De Murcia, J.P. Fillard, E. Vicario, ”Optical and electrical properties of SnO2 thin films in relation to their stoichiometric deviation and their crystalline structure”, Thin Solid Films, Vol.41, pp.127-135(1977).
39. M.S. Selim, A. Sawaby, Z.S.E. Mandoud, “Electrical and optical properties of ferric oxide thin films prepared via a sol-gel method”, Materials Research Bulletin, Vol.35, pp.2123-2133(2000).
40. 施敏原,半導體元件物理與製作技術,國立交通大學出版社,新竹(2002)。
41. S. Kumari, C. Tripathi, A. P. Singh, D. Chauhan, R. Shrivastav, S. Dass, V.R. Satsangi, “Characterization of Zn-doped hematite thin films for photoelectrochemical splitting of water”, Current Science, Vol.91, pp.1062-1064(2006).
42. A.A. Akl, “Optical properties of crystalline and non-crystalline iron oxide thin film deposited by spray pyrolysis”, Applied Surface Science, Vol.233, pp.307-319(2004).
43. 吳景輝,”含銀AZO透明導電膜及AZO@Au奈米粉體之研究”,國立成功大學化學工程學系碩士論文,台南(2007)。
44. 王天佑,製備氧化鐵薄膜以及摻雜鈦離子和鍺離子的氧化鐵薄膜應用於光電化學電池,國立台灣大學化學工程學研究所碩士論文,台北(2006)。
45. G. Gordillo, C. Calderon, “Properties of ZnO thin films prepared by reactive evaporation”, Solar Energy Materials & Solar cell, Vol.69, pp.251-260(2001).
46. Y.V. Pleskov, V.M. Mazin, Y.E. Evstefeeva, V.P. Varnin, I.G. teremetskaya, V.A. Laptev, “Photoelectrochemical determination of the flatband potential of boron-doped diamond”, Electrochemical and Solid-State, Vol.3, pp.141-143(1996).
47. 許樹恩、吳泰伯,”X光繞射原理與材料結構分析”,中國材料科學學會發行,新竹(2001)。
48. S. Gota, E. Guiot, M. Henriot, G.S. Martine, “Atomic-oxygen-assisted MBE growth of α-Fe2O3 on α-Al2O3 (0001): metastable FeO(111)-like phase at subnanometer thicknesses”, Physical Review B, Vol.60, pp.14387-14395(1999).
指導教授 曾重仁(Chung-jen Tseng) 審核日期 2009-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明