博碩士論文 943208003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:3.145.36.10
姓名 蒲瑞台(JUI-TAI PU)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 定開孔率下流道設計與疏水流場對質子交換膜燃料電池之性能影響
(The effect of flow field design and hydrophobic field under fixed open area ratio for PEMFC’s performance)
相關論文
★ 熱風循環烘箱熱傳特性研究★ 以陽極處理製備奈米結構之氧化鐵光觸媒薄膜應用在光電化學產氫
★ 規則多孔碳應用在燃料電池陰極觸媒擔體之研究★ 鉑錫/多孔碳觸媒應用於燃料電池陰極反應之研究
★ 腐蝕特性對金屬多孔材質子交換膜燃料電池性能影響之研究★ 碎形理論應用在質子交換膜燃料電池中氣體擴散層熱傳導係數之研究
★ 中溫固態氧化物燃料電池複合系統分析★ 中文質子傳輸型固態氧化物燃料電池陽極之研究
★ 鋯摻雜鋇鈰釔氧化物微結構與電化學特性之研究★ 發展應用脈衝雷射沉積製備奈米顆粒堆疊多孔觸媒層與滴塗聚苯並咪唑介面層製作高溫型質子交換膜燃料電池
★ 直接甲醇燃料電池氣體擴散層之研究★ 不同流道設計之透明質子交換膜燃料電池陰極水生成現象探討
★ 鋰離子電池陰極材料LiCoO2粉體尺寸與形貌對電池性能的影響★ 多孔性碳材應用於質子交換膜燃料電池觸媒層之研究
★ 多孔材應用於質子交換膜燃料電池散熱之研究★ 質子交換膜燃料電池發泡材流道與傳統流道之模擬分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本實驗藉由實驗方法,利用燃料電池測試系統及以Gore 5621為主體之膜電極組來進行單電池實驗分析,研究中我們主要針對固定開孔率的條件下探討不同流場設計對性能之影響;在操作條件上分別以擺放方向、不同氣體流量、改變陰極加濕溫度、流場疏水處理與改變氧化劑種類來進行性能測試與分析,所得到之結果可以做為未來組裝電池之參考。
由實驗結果可以發現,流場在不同擺放方向下,提升反應氣體流量對單蛇型流場沒有影響,但是對於連續柵狀型與雙蛇型流場可以藉由提高反應氣體之流量來改善水氾濫的情形;隨著陰極增濕瓶溫度提升,加濕量隨著增加,在陰極端容易有水氾濫產生,而雙蛇型流場較容易產生積水的情形,尤其當流場為垂直擺放時。流場經過疏水處理後,單蛇型流場較無明顯之影響,從性能曲線圖中得知,連續柵狀型與雙蛇型流場能藉由流道疏水處理而在水氾濫的情形上獲得改善。當氣體加濕量較低時氣體流動為逆向流時可以藉由電池內部水平衡之效果而維持膜的濕潤。使用空氣為氧化劑時,陰極端由於電池生成水的影響,不需要太高之加濕量,如果提升增濕量,雖然在低電流密度下性能較佳,但是在高電流密度時容易產生水氾濫。
摘要(英) The purpose of this study is to investigate the effect of flow field design and hydrophobic treatment of flow channels on the performance of proton exchange membrane fuel cell under the condition of fixed open ratio of the flow fields. Gore 5621 is used in this work. Operation conditions include flow field orientation (parallel or perpendicular), gas flow rate, cathode humidification temperature, and type of oxidizers.
The results show that increasing the reaction flow rate does not affect the cell performance for single serpentine flow field at both orientations. However, for the series sweep and double serpentine flow fields, cell performance is enhanced by increasing the reactant flow rate. In perpendicular orientation case, double serpentine flow field cell has serious water flooding when the cathode gas is highly humidified. After hydrophobic treatment of the flow field, mass transfer overpotential is reduced for the cells. For low humidification cases, the membrane can remained welled by using the count-flow set up for the hydrophobically treated flow field cases. When using air as the oxidaut, it should not be overly humidified.
關鍵字(中) ★ 開孔率
★ 疏水
★ 流道設計
★ 質子交換膜
關鍵字(英) ★ open ratio
★ hydrophobic
★ PEMFC
★ flow field
論文目次 摘要.....................................................Ⅰ
英文摘要.................................................Ⅱ
謝誌.....................................................Ⅲ
目錄.....................................................Ⅳ
圖目錄...................................................Ⅶ
表目錄..................................................XⅡ
第一章、 緒論................................ 1
1.1 前言.................................................1
1.2 燃料電池主要元件分析.................................2
1.3 燃料電池發電原理與極化現象...........................5
1.4 研究目的.............................................7
第二章、 文獻回顧............................ 9
2.1 流場設計之目的.......................................9
2.2 流道幾何設計.........................................9
2.3 氣體擴散層特性......................................12
2.4 交流阻抗分析........................................13
2.5 水傳輸現象..........................................14
第三章、 實驗方法與設備..................... 17
3.1 流道板加工.........................................17
3.2 流場疏水處理.......................................18
3.3 燃料電池測試系統...................................18
3.4 交流阻抗分析.......................................19
第四章、 結果與討論......................... 21
4.1 定開孔率性能測試....................................21
4.1.1 平行擺放..........................................21
4.1.2 垂直擺放..........................................23
4.2 定開孔率疏水流道性能測試............................24
4.2.1 擺放位置對性能的影響..............................24
4.2.2 氣體流動方向對性能之影響..........................25
4.3 改變氧化劑種類......................................27
4.3.1 改變增濕瓶溫度.....................................27
4.3.2 增濕瓶溫度最佳化...................................28
4.4 交流阻抗量測........................................29
4.4.1 改變氣體流動方向...................................29
4.4.2 改變增濕瓶溫度.....................................30
第五章、 結論與未來方向..................... 31
5.1 結論.................................................31
5.2 未來方向與建議.......................................32
參考文獻 .............................................34
附錄一.................................................40
參考文獻 1.黃鎮江,“燃料電池”,全華科技圖書,中華民國92年11 月,pp.1-7~1-62
2.Y. G. Yoon, W. Y. Lee, G. G. Park, T. H. Yang, C. S. Kim, “Effects of channel and rib widths of flow field plates on the performance of a PEMFC,"International Journal of Hydrogen Energy, 30, 1363-1366, 2005.
3.S. Shimpalee, S. Greenway, J. W. Van Zee, “The impact of channel path length on PEMFC flow-field design,"Journal of Power Source, No. of Pages 9, 2006.
4.A. Su, F. B. Weng, C. Y. Hsu, Y. M. Chen, “Studies on flooding in PEM fuel cell cathode channels,"International Journal of Hydrogen Energy, 31, 1031-1039, 2006.
5.F. B. Weng, A. Su, C.Y. Hsu, C. Y. Lee, “Study of water-flooding behaviour in cathode channel of a transparent,"Journal of Power Source, 157, 674-680, 2006.
6.D. L. Wood, J. S. Yi and T. V. Nguyen, “Effect of direct liquid water injection and interdigitated flow field on the performance of proton exchange membrane fuel cells,"Electrochimica Acta, 43(24), 3795-3809, 1998
7.T. Hottinen, O. Himanen, P. Lund, “Effect of cathode structure on planar free-breathing PEMFC,"Journal of Power Sources, 138, 205–210, 2004
8.K. Tüber, A. Oedegaard, M. Hermann, C. Hebling, “Investigation of fractal flow-fields in portable proton exchange membrane and direct methanol fuel cells,"Journal of Power Sources, 131, 175-181, 2004.
9.羅世坤,“流場設計對質子交換膜燃料電池性能之研究,”國立中央大學
機械研究所碩士論文,桃園。(2003)
10.A. Kumar, R. G. Reddy, “Effect of gas flow field design in the bipolar end plates on the steady and transient state performance of polymer electrolyte membrane fuel cells,"Journal of Power Sources, 155, 264-271, 2006.
11.P. H. Oosthuizen, L. Sun, K.B. McAuley, “The effect of channel-to-channel gas crossover on the pressure and temperature distribution in PEM fuel cell flow plates,"Applied Thermal Engineering, 25, 1083-1096, 2005.
12.I. A. Schneider, H. Kuhn, A. Wokaun, and G. G. Scherer, “ Study of Water Balance in a Polymer Electrolyte Fuel Cell,"Journal of The Electrochemical Society, 152(12), A2383-A2389 , 2005.
13.I. A. Schneider, H. Kuhn, A. Wokaun, and G. G. Scherer, “ Fast Locally Resolved Electrochemical Impedance Spectroscopy in Polymer Electrolyte Fuel Cells,"Journal of The Electrochemical Society, 152(10), A2092-A2103 , 2005.
14.I. A. Schneider, D. Kramer, A. Wokaun, G.G. Scherer, “Spatially resolved characterization of PEFCs using simultaneously neutron radiography and locally resolved impedance spectroscopy,"Electrochemistry Communications , 7, 1393–1397, 2005.
15.M. V. Williams, H. R. Kunz, and J. M. Fenton, “ Influence of Convection Through Gas-Diffusion Layers on Limiting Current in PEM FCs Using a Serpentine Flow Field,"Journal of The Electrochemical Society, 151, A1617-A1627 , 2004.
16.J. Benziger, J. Nehlsen, D. Blackwell, T. Brennan, J. Itescu, “Water flow in the gas diffusion layer of PEM fuel cells,"Journal of Membrane Science, 261, 98–106, 2005.
17.K. T. Jeng, S. F. Lee, G. F. Tsai, C. H. Wang , “Oxygen mass transfer in PEM fuel cell gas diffusion layers,"Journal of Power Sources , 138 , 41–50, 2004.
18.H. K. Lee, J. H. Park, D. Y. Kim, T. H. Lee, “A study on the characteristics of the diffusion layer thickness,"Journal of Power Sources , 131 , 200–206, 2004.
19.M. V. Williams, E. Beg, L. Bonville, H. R. Kunz, and J. M. Fenton, “Characterization of Gas Diffusion Layers for PEMFC,” Journal of The Electrochemical Society, 151 (8), A1173-A1180, 2004.
20.C. Lim, C.Y. Wang, “Effects of hydrophobic polymer content in GDL on power,"Electrochimica Acta, 49, 4149-4156, 2004
21.R. Roshandel, B. Farhanieh, E. Saievar-Iranizad “The effects of porosity distribution variation on PEM fuel cell performance,"Renewable Energy, 30, 1557-1572, 2005.
22.M. Ciureanu, S. D. Mikhailenko, S. Kaliaguine, “PEM fuel cells as membrane reactors: kinetic analysis by impedance spectroscopy,”Catalysis Today, 82, 195-206, 2003.
23.R. Makharia, M. F. Mathias, and D. R. Baker, “Measurement of Catalyst Layer Electrolyte Resistance in PEFCs Using Electrochemical Impedance Spectroscopy,” Journal of The Electrochemical Society, 152(5), A970-A977, 2005.
24.Z. Xie, S. Holdcroft, “Polarization-dependent mass transport parameters for orr in perfluorosulfonic acid ionomer membranes: an EIS study using microelectrodes,” Journal of Electroanalytical Chemistry, 568, 247–260, 2004.
25.J. M. Song, S. Y. Cha, W. M. Lee, “Optimal composition of polymer electrolyte fuel cell electrodes determined by the AC impedance method, ” Journal of Power Sources, 94, 78-84, 2001.
26.A. G. Hombrados, L. Gonz´alez, M. A. Rubio, W. Agila, E. Villanueva, D. Guinea, E. Chinarro, B. Moreno, J.R. Jurado, “Symmetrical electrode mode for PEMFC characterization using impedance spectroscopy,” Journal of Power Sources, 151, 25–31, 2005.
27.Q. Yan, H. Toghiani, J. Wu, “ Investigation of water transport through membrane in a PEM fuel cell by water balance experiments,"Journal of Power Sources, 158 , 316–325, 2006.
28.T. J. P. Freire, E. R. Gonzalez, “Effect of membrane characteristics and humidification conditions on the impedance response of polymer electrolyte fuel cells,"Journal of Electroanalytical Chemistry , 503, 57–68, 2001.
29.A. Theodorakakos, T. Ous, M. Gavaises, J. M. Nouri, N. Nikolopoulos, H. Yanagihara, “Dynamics of water droplets detached from porous surfaces of relevance to PEM fuel cells,"Journal of Colloid and Interface Science, 300, 673-687, 2006.
30.R. Eckl, W. Zehtnera, C. Leub, U. Wagner, “Experimental analysis of water management in a self-humidifying polymer electrolyte fuel cell stack,"Journal of Power Sources, 138, 137-144, 2004.
31.S. U. Jeong, E. A. Cho, H. J. Kim, T. H. Lim, I. H. Oh, S. H. Kim, “A study on cathode structure and water transport in air-breathing PEM fuel cells,"Journal of Power Sources, No. of Pages 6, 2006.
32.F. Y. Zhang, X. G. Yang, and C. Y. Wang, “Liquid Water Removal from a Polymer Electrolyte Fuel Cell,"Journal of The Electrochemical Society, 153 (2), A225-A232 , 2006.
33.N. Rajalakshmi, T. T. Jayanth, R. Thangamuthu, G. Sasikumar, P. Sridhar, K.S. Dhathathreyan, “Water transport characteristics of polymer electrolyte membrane fuel cell,"International Journal of Hydrogen Energy, 29, 1009 -1014, 2004.
34.K. H. Choi, D. H. Peck, C. S. Kim, D.R. Shin, Tae-Hee Lee, “Water transport in polymer membranes for PEMFC ,"Journal of Power Sources, 86,197-201, 2000.
35.B. Yang, Y. Z. Fu, A. Manthiram,“ Operation of thin Nafion-based self-humidifying membranes in proton exchange membrane fuel cells with dry H2 and O2,"Journal of Power Sources, 139, 170-175, 2005.
36.M. Sakai, J. H. Song, N. Yoshida, S. Suzuki, Y. Kameshima, and A. Nakajima, “Direct Observation of Internal Fluidity in a Water Droplet during,"Langmuir, 22, 4906-4909, 2006.
37.A. Taniguchi, K. Yasuda, “Highly water-proof coating of gas flow channels by plasma polymerization for PEM fuel cells,"Journal of Power Sources, 141, 8-12, 2005.
指導教授 曾重仁(CHUNG-JEN TSENG) 審核日期 2007-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明