參考文獻 |
[1] C. Brissot, M. Rosso, J. -N. Chazalviel, and S. Lascaud, “Dendritic growth mechanisms in lithium/polymer cells,” Journal of Power Sources, Vol. 81-12, pp. 925-929, (1999)
[2] D. W. Murphy, F. J. DiSalvo, J. N. Carides, and J. V. Waszczak, “Topochemical reactions of rutile related structures with lithium,” Material Research Bulletin, Vol. 13, pp.1395-1402, (1978)
[3] K. Mizushima, P. C. Jones, P. J. Wiseman and J. B. Goodenough, “LixCoO2(0<x<1): A new cathode material for batteries of high energy density,” Material Research Bulletin, Vol. 15, pp. 783-789, (1980)
[4] H. J. Orman and P. J. Wiseman, “Cobalt (Ⅲ) lithium-oxide, colio2-structure refinement by power neutron-diffraction,” Acta Crystallographica, Vol.40, pp. 12-16, (1984)
[5] E. Plichta, M. Salomon, S. Slane, M. Uchiyama, D. Chua, W. B. Ebner, and H. W. Lin, “A rechargeable Li/LixCoO2 cell,” Journal of Power Sources, Vol. 21, pp. 25-31, (1987)
[6] M. G. S. R. Thomas, W. I. F. David, J. B. Goodenough, and P. Grover, “Synthesis and structure characterization of the normal spinel Li[Ni2O4],” Material Research Bulletin, Vol. 20, pp. 1137-1146, (1985)
[7] A. Marini, V. Berbernni, V. Massarotti, G. Flor, R. Riccardi, and M. Leonini, “Solid-state reaction study on the system Ni-Li2CO3,” Solid State Ionics, Vol. 32-33, pp. 398-408, (1989)
[8] J. M. Tarascon, E. Wang, and F. K. Shokoohi, “The spinel phase of LiMn2O4 as a cathode in secondary lithium cells,” Journal of The Electrochemical Society, Vol. 138, pp. 2859-2864, (1991)
[9] J. M. Tarascon and D. Guyomard, “The Li1+xMn2O4/C rocking-chair system: A review,” Electrochimical Acta, Vol. 38, pp. 1221-1231, (1993)
[10] A. Manthiram and J. Kim, “Low temperature synthesis of insertion oxides for lithium batteries,” Chemistry of Materials, Vol. 10, pp. 2895-2909 (1998)
[11] Y. Takeda, K. Nakahara, M. Nishijima, N. Imanashi, O. Yamamoto, M. Takano, and R. Kanno, “Sodium deintercalation from sodium iron oxide Material Research Bulletin,” Vol. 29, pp. 659-666, (1994)
[12] H. F. Wang, Y. I. Jang, B. Y. Huang, D. R. Sadoway, and Y. M. Chiang, “TEM study of electrochemical cycling-induced damage and disorder in LiCoO2 cathodes for rechargeable lithium batteries,” Journal of The Electrochemical Society, Vol. 146, pp. 473-480 (1999)
[13] E. Plichita, S. Slane, M. Uchiyama, M. Salomon, D. Chua, W. B. Ebner and H.W. Lin, “An improved Li/LixCoO2 rechargeable cells,” Journal of The Electrochemical Society, Vol. 136, pp.1865-1869, (1989)
[14] G. G. Amatucci, J. M. Tarascon, and L. C. Klein, “Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries,” Solid State Ionics, Vol. 83, pp. 167-173, (1996)
[15] M. Armand and J. M. Tarascon, “Building better batteries,” Nature, Vol. 451, pp. 652-657, (2008)
[16] J. B. Goodenough, K. Mizushima, and T. Takeda, “Solid-solution oxides for storage-battery electrodes,” Japanese Journal of Applied Physics, Vol. 19,pp. 305-313, (1980)
[17] M. G. S. R. Thomas, W. I. F. David, J. B. Goodenough, and P. Grover, “Synthesis an structural characterization of the normal spinel Li[Ni2]O4,’ Material Research Bulletin, Vol. 20, pp. 1137-1146, (1985)
[18] S. H. Yang, L. Croguennec, C. Delmas, E. C. Nelson, and M.A. Okeefe, “Atomic resolution of lithium ions LiCoO2, ” Nature Materials, Vol. 2, pp. 464-467, (2003)
[19] A. Marini, V. Berbernni, V. Massarotti, G. Flor, R. Riccardi, and M. Leonini, “Solid-state reaction study on the system Ni-Li2CO3,” Solid State Ionics, Vol. 398, pp. 32-33, (1989)
[20] J. Ying, C. Jiang, and C. wan, “Preparation and characterization of high-density spherical LiCoO2 cathode material for lithium ion batteries”, Journal of Power Sources, Vol.129, pp. 264-269, (2004)
[21] Y. Z. Li, Z. Zhou, J. X. Ren, C. Ye, X. P. Gao, and J. Yan, “Effect of ball mill on preparation and electrochemical performance of rechargeablelithium battery LiVPO4F cathode material,” The Chinese Journal of Nonferrous Metals, Vol. 15, pp. 70-73, (2005)
[22] Y. Zhao, D. Xia, Y. Li, and C. Yu, “Investigation of high-rate spherical LiCoO2 with mesoporous structure via self-assembly in microemulsion,” Electrochemical and Solid-State Letters, Vol. 11(3), A30-A33, (2008)
[23] Z. Wang, H. Dong, L. Chen, Y. Mo, and X. Huang, “Understanding mechanism of improved electrochemical performanceof surface modified LiCoO2,” Solid State Ionics, Vol. 175, pp. 239-242, (2004)
[24] C. H. Lu, S. W. Liu, “Influence of the particle size on the electrochemical properties of lithium manganese oxide,” Journal of Power Sources, Vol. 97, pp. 458-460, (2001)
[25] 王憲程, 呂宗昕, 台大工程學刊, “奈米科技與鋰離子二次電池電極材料,” 國立臺灣大學, 第八十四期, 民國九十一年二月, 第129-135頁
[26] Y. K. Sun, I. H. Oh, S. A. Hong, “Synthesis of ultrafine LiCoO2 powders by sol-gel methode,” Journal of Material Science, Vol. 31, pp. 3617-3621, (1996)
[27] S. P. Sheu, C. Y. Yao, J. M. Chen, and Y. C. Chiou, “Influence of the LiCoO2 particle size on the performance of lithium-ion batteries”, Journal of Power Sources, Vol. 68, pp. 533-535, (1997)
[28] T. Kawamura, M. Makidera, S. Okada, K. Koga, N. Miura, and J. I. Yamaki, “Effect of nano-size LiCoO2 cathode powders on Li-Ion cells,” Journal of Power Sources, Vol. 146, pp. 27-32, (2005)
[29] M. Okubo, E. Hosono, J. Kim, M. Enomoto, N. Kojima, T. Kudo, H. Zhou, and I. Honma, “Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode,” Journal of the American Chemical Society, Vol. 129, pp. 7444-7452, (2007)
[30] J. Ying, J. Gao, C. Jiang, C. Wan, X. M. He, “Research and development of preparing spherical cathode materials for lithium ion batteries by controlled crystallization methode,” Journal of Inorganic Materials, Vol. 21, pp. 291-297, (2006)
[31] P. He, H. Wang, L. Qi, and T. Osaka, “Synthetic optimization of spherical LiCoO2 and precursor via uniform-phase precipitation,” Journal of Power Sources, Vol. 158, pp. 529-534, (2006)
[32] 卓永達, 碩士論文, “以硝酸銨-環六亞甲基四胺燃燒法合成奈米級LiMn2O4陰極材料製程研究,” 國立中央大學, 中華民國台灣 (2002)
[33] A. Calka, and D. Wexler, “Mechanical milling assisted by electrical discharge,” Nature, Vol. 419, pp. 147-151, (2002)
|