博碩士論文 963208012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:55 、訪客IP:3.16.203.27
姓名 林豐瓏(Feng-Long Lin)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 發光二極體電極設計與電流分佈模擬分析
(Electrode Pattern Design and Current Distribution Analysis Simulation in the Light-Emitting Diode Devices)
相關論文
★ 外加水平式磁場柴氏長晶法生長矽單晶之熱流場數值模擬研究★ 外加cusp磁場柴氏法生長單晶矽之熱流場及氧雜質傳輸數值分析
★ MOCVD垂直式腔體中氮化鎵薄膜生長之模擬分析★ 考量氣體分子 吸附性質之 MOCVD垂直反應腔體模擬分析
★ Phosphor Packaging Design of white LED with Optical-Thermal-Electrical Coupling★ 水平式MOCVD腔體中使用氣體脈衝方法生長氮化鋁薄膜之數值模擬與分析
★ 外加Cusp磁場下柴氏法生長單晶矽之不同晶堝轉影響熱流場及氧傳輸數值分析★ 水解二乙基鋅於近耦合噴淋式反對稱腔體 之MOCVD模擬設計分析
★ MOCVD水平式腔體中氮化鎵薄膜製程碳濃度之模擬與傳輸現象分析★ MOCVD 行星式腔體之模型建立與傳輸現象分析
★ 柴氏法生長6~8吋矽單晶之高溫梯爐體與製程設計模擬★ 300mm矽晶圓片於平坦度10奈米以下磊晶製程之數值模擬分析
★ 以陽極處理法生長二氧化鈦奈米管於玻璃基板上之研究★ 二段陽極處理法應用於鈦薄膜成長之研究
★ 交流電發光二極體之接面溫度與熱阻量測研究★ 液滴於具溫度梯度的微流道之數值模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 氮化鎵發光二極體在固態照明中有許多重要應用已逐漸被重視。發光二極體由於電流分佈不均造成其晶片發光效率降低與熱能產生。此電流分佈不均的情形稱為電流擁塞,將影響晶片可靠度及光輸出的損耗。為了進一步了解晶片內部發光層電流擴散行為,本研究使用有限元素法建立數值模擬模型以計算發光二極體空間電流分佈。
為了達到發光二極體電流均勻性,須盡可能得讓晶片內部縱向擴散電流增加,而讓橫向擴散電流減少。在本研究中,使用數值模擬的方式針對各種不同形狀的n-電極進行了電流擴散分析比較。當n-電極迴圈圖案面積越小,其晶片電流均勻性較佳。晶片上不同的探針數目與位置均會影響電流分佈。另一方面,本模擬結果與實際製程比對,有一致性之趨勢,其模擬與實驗比對之準確率達90%。藉由垂直結構LED實際案例,在本研究中當目字型的n-電極圖案距離晶片邊緣為125μm長度時可以有0.2V的壓降改善,其晶片的活化區電流密度模擬結果與發光強度有一致性分佈。在有無電流阻障層之電流擴散效應分析,當有電流阻障層可明顯地使其效率增加。
摘要(英) GaN-based light-emitting diodes have attracted much attention due to their great applications to solid-state lighting. The non-uniform current spreading, which locally produces the light emission and the heat generation in the light-emitting diodes. It was reported that the non-uniform current spreading, the so-called current crowding effect, was strongly related to chip reliability in addition to local light emission. To further understand the current spreading behavior in the active region, a finite element method was used to simulate the electrical characteristic and current distribution of a GaN-based LEDs device in the study.
It can be known that uniform current spreading can be achieved, the vertical current should be minimized, but the spreading current maximized. In this study, we designed several different shapes of n-electrode patterns in light emitting diodes, analyzed quantitatively the current spreading by numerical simulation method. At first, the current uniformity increases as the area inside n-electrode loop becomes small. The difference in the quantity and position of probe in the chips also affect current distribution. In second, simulation and experimental results for different n-electrode showed quite similar tendencies. Simulation results are accurate more than 90%.For real cases of vertical LEDs, the driving voltage for the distance 125μm between n-electrode patterns of 目 type and chip edge design considered in our thesis can be markedly reduced to around 0.2V. We obtained a good agreement between the measured light intensity distribution emitted from the surface of a fabricated device and that calculated with our current density distribution in the active layer of LED chip. In the other part of this thesis, comparison of some cases clearly shows that the use of the current blocking layer enhances the efficiency significantly.
關鍵字(中) ★ 氮化鎵發光二極體
★ 有限元素法
★ 電流分佈
★ 數值模擬
關鍵字(英) ★ numerical simulation
★ GaN-based light-emitting
★ finite element method
★ current distribution
論文目次 摘要……………………………………………………………………………..i
Abstract……………………………………………………………….………ii
致謝……………………………………………………………….…………….iv
目錄……………………………………………………………………........v
圖目錄…………………………………………………………………...…..vii
表目錄………………………………………………………...………....….x
符號說明…………………………………………………...…………..…......xi
第一章 緒論………………………………………………………………..…1
第二章 理論基礎…………………………………………………….…10
2.1發光二極體發光原理與發光效率…………………………………..……10
2.2電流分佈均勻理論…………………………………………..……12
2.3電流分佈連續方程式…………………………………………..……14
第三章 求解方法與分析步驟…………………………………….…18
3.1有限元素法………………………………………………..…………....…18
3.2模擬分析步驟…………………………………………………………..……..19
3.2.1物理模型及問題描述…………………………………………..19
3.2.2統御條件設定(G.E)與邊界條件設定(B.C) ………………..………19
3.2.3發光層疊代計法………………………………………………...…. 21
第四章 結果與討論…………………………………………………..….…28
4.1 n-電極配置與電流分佈模擬分佈……………………………………..…28
4.1.1 n-電極迴圈數不同設計比較…………………………………...…29
4.2.2 n-電極距離邊緣長度不同最佳化位置. …………………………..29
4.2發光二極體電極設計模擬與實驗勢…………………………………..29
4.3 電流阻障層效應與不同電極佈置模擬……………..……………..……32
4.3.1 電流阻障層效應與分析………….……...……………………………… 32
4.3.2 不同電極設計. ………………...…………………………..……..34
第五章 結論………………………………………………………………...65
參考文獻…………………………………………………………………......67
參考文獻 [1] 紀國鐘,蘇炎坤,”光電半導體技術手册”,台灣電子材料與元件協會,台北,Pages 65-75,(2002)。
[2] C. Huh, H. S. Kim, S. W. Kim, and D. J. Kim,“InGaN/GaN multiple quantum well light-emitting diodes with highly transparent Pt thin film contact on p-GaN”, Appl. Phys.87, Pages 4464, (2000).
[3] H. Kim, J. M. Lee, C. Huh, S. W. Kim, D. J. Kim, S. J. Park, and H. Hwanga, “Modeling of a GaN-based light-emitting diode for uniform current spreading”, Appl. Phys. Lett. 77, Pages 1903, (2000).
[4] J. J. Wierer, D. A. Steigerwald, ” High-power AlGaInN flip-chip light-emitting diodes”, Appl. Phys. Lett. 78, Pages 3379, (2001).
[5] S. X. Jin, J. Li, J. Y. Lin, and H. X. Jiang, “ InGaN/GaN quantum well interconnected micro-disk light emitting diodes, ”Appl. Phys. Lett. 77, Pages 3236, (2000).
[6] 史光國, ”現代半導體發光及雷射二極體材料技術”,全華出版社, pages 1-5 (2001).
[7] 旭明光電,”旭明光電高亮度Mvp LED實現於固態照明之應用”,2008-02-21,http://www.semileds.com/。
[8] Volker Harle, “High brightness III/V-Nritride based light emitting diodes”, Osram, pages 21-35, (2005).
[9] I. Eliashevich, Y. Li, A. Osinsky, C. A. Tran, M. G. Brown, and R. F. Karlicek, “InGaN blue light-emitting diodes with optimized n-GaN layer”, Proc. SPIE 3621, pages 28, (1999).
[10] H. Kim, S. J. Park, N. M. Park, and H. Hwang, “Lateral current transport path a model for GaN-based light-emitting diodes: Applications to practical device designs “, Appl. Phys. Lett. 77, pages 1903, (2000).
[11] X. Guo and E. F. Schubert, “Current crowding in GaN/InGaN light emitting diodes on insulating substrates”, J. Appl. Phys. 90, pages 4191, (2001).
[12] H. Kim, S. J. Park, and H. Hwang, ”Lateral current transport path, a model for GaN-based light-emitting diodes: Applications to practical device designs”, Appl. Phys. Lett. 81, pages 1326, (2002).
[13] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb,
M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology”, IEEE, 8, pages 310-317, (2002).
[14] A. Chakraborty, L. Shen, H. Masui, S. P. DenBaars, and U. K. Mishra, “Interdigitated multipixel arrays for the fabrication of high-power light-emitting diodes with low series esistances”, Appl. Phys. Lett. 88, pages 181120-1, (2006).
[15] H. Kim, K. K. Kim, and K. K. Choi, “Design of high-efficiency GaN-based light emitting diodes with vertical injection geometry”, Appl. Phys. Lett. 91, pages 023510-1 (2007).
[16] A. Ebong, S. Arthur, E. Downey, E. B. Stokes, and X. A. Cao, “Modeling and Circuit simulation of GaN-based light emitting diodes for optimum efficiency through uniform current spreading”, Proc. SPIE, 4776, pages 187-194. (2003).
[17] X. Guo, Y. L. Li, and E. F. Schubert, “Efficiency of GaN/InGaN light emittin emitting diodes with interdigitated mesa geometry”, Appl. Phys. Lett. 79, pages 1936. (2001).
[18] S. Hwang, J. Shim, ”A Method for Current Spreading Analysis and Electrode
Pattern Design in Light-Emitting Diodes”, IEEE, 55, NO. 5, pages 1123-1126, (2008).
[19] J. S. Yun, S. M. Hwang, and J. I. Shim, ”Current Spreading Analysis in Vertical Electrode GaN-based Blue LEDs”, Proc. SPIE, 6841, pages 68401-68408, (2007).
[20] 許國君,” Electrical Simulation and Current Spreading Analysis in the GaN Light-Emitting Diode Dies”,中央大學機械工程研究所博士論文,(2008)。
[21] T. M. Chen, S. J. Wang, K. M. Uang, H. Y. Kuo, C. C. Tsai, W. C. Lee, and H. Kuan, ” Current Spreading and Blocking Designs for improving Light Output Power from the Vertical-Structured GaN Based Light Emitting Diodes,” IEEE, 20, pages 703-705, (2008).
[22] 胡凡勳,” 發光二極體晶片之熱電耦合分析”,中央大學機械工程研究所博士論文,(2009)。
[23] E. F. Schubert, ” Light-Emitting Diodes 2nd”, Cambridge University Press, Cambridge, England, (2006).
[24] 張世揚,” 應用於大面積高功率GaN基LEDs之電極模擬與設計研究”,成功大學機械工程研究所碩士論文,(2006)。
[25] 黃昌琛,”有限元素法在電機工程應用”,全華出版社,pages 4-10,(2005)。
[26] L. J. Segerlind,” Applied Finite Element Analysis 2nd", John Wiley & Sons, (1984)
[27] A. D. Belegndu, ”Introduction to Finite Elements in Engineering 3nd”, Ashok D.Belegndu , Prentice Hall, (2002).
[28] COMSOL3.4Multiphysics User’s Guide.
[29] M. V. Bogdanov, K. A. Bulashevich, I. Y. Evstratov, A. I. Zhmakin, and S. Y. Karpov, “Coupled modeling of current spreading, thermal effects and light extraction in III-nitride light-emitting diodes,” Semicond. Sci. Technol., 23, pages 125023, (2008).
[30] K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, H. Kudo, Y. Sudo, M. Kato, and T. Taguchi, “High-output power near-ultraviolet and violet light-emitting diodes fabricated on patterned sapphire substrates using metalorganic vapor phase epitaxy”, Proc. SPIE, pages 5187, (2004).
指導教授 陳志臣(Chen, Jyh-Chen) 審核日期 2009-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明