博碩士論文 963208016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:81 、訪客IP:3.21.159.223
姓名 鄭亨(Heng Jheng)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 以化學水浴法製備AgInS2可見光光電極及其摻雜銅之研究
(production of undoped and Cu-doped visible-light photoelectrode by chemical bath deposition)
相關論文
★ 金屬粉末射出成型毛細吸附脫脂模擬★ 燃料電池複合式流道設計與膜電極組製程
★ 氣態鋅與水蒸氣混合之流場與反應爐參數分析★ 利用化學水浴沉積法製作Ni-ZnO光電極之研究
★ 電解水產氫之電解液流場效應分析★ 高溫高壓之電解水產氫效率分析
★ 超音波場下電解水產氫之效應分析★ 以化學水浴法製備氧化鋅光電極薄膜之研究
★ 以化學浴沉積法製備四元化合物光電極薄膜之研究★ 利用化學水浴法鍍製二氧化鈦光電極薄膜之研究
★ 以化學浴沉積法製備Cu-In-S化合物光電極薄膜之研究★ 以化學浴沉積法製備β-In2S3化合物光電極薄膜之研究
★ 以化學浴沉積法製備不同結構氧化鋅光電極薄膜之研究★ 電解水產氫中極化作用之分析與研究
★ 磁場對水電解產氫效率增益之機制研究★ 二氧化銥/氧化還原石墨烯複合觸媒之水電解效能研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
  光電極產氫,為一種結合太陽能與氫能此兩種極具潛力且被視為未來兩顆新星之替代能源的新研究方向,利用光觸媒與電化學原理,將光電極置於水溶液中吸收太陽能,並利用此吸收的能源將水解離變成氫氣與氧氣,之後再將解離之氫氣收集起來,應用於氫能發電,此即為光電極產氫之基本概念。
本實驗利用化學水浴法-此為一種設備簡單、製作便宜、產生廢料少且易於處理、具備大面積製備、極具經濟效益的化學製程,製備AgInS2可見光光電極薄膜,研究其材料特性,並應用於光電解水產氫。
  研究結果顯示AgInS2半導體光電極在無施加偏壓下照光可得到接近 4 mA/cm2的光電流密度,而在摻雜銅之後光電流在同樣條件下,可提升至5.5 mA/cm2之電流密度。
  因此,本研究應用化學水浴法此簡單製程所製備的AgInS2半導體光電極,為相當具成本優勢且光電轉換效率良好之極具潛力的材料之ㄧ。
摘要(英) Abstract
Hydrogen energy is regarded as prosperous alternative energy in the future. Among the hydrogen production methods, photoelectrochemical method is a promising technology. Based on photocatalytic and electrochemical principles, the photoelectrode absorbs solar energy and electrolyzes water into oxygen and hydrogen ions. The hydrogen ions move in the solution to the counter electrode and recover as hydrogen gas.
In our experiment, the chemical bath deposition (CBD) method is adopted to produce AgInS2 visible-light photoelectrode film. CBD is simple, cheap, easier in handling waste, and large in area deposition. The influences of working parameters, such as: electrolytic concentration, heat treating, film thickness on the performance of hydrogen production are investigated in details.
Experiments show that AgInS2 photoelectrode has almost 4 mA/cm2 photocurrent density at 0 bias. After doping Cu into AgInS2 at the same conditions, photocurrent density increases to 5.5 mA/cm2. Therefore, producing hydrogen with AgInS2 photoelectrode by chemical bath deposition is proved to have low-cost, yet efficient in the photo-electron conversion.
關鍵字(中) ★ 半體體薄膜
★ 光電極
★ 化學水浴法
關鍵字(英) ★ semiconductor thin film
★ photoelectrode
★ chemical bath deposition
論文目次 總目錄
摘要 I
Abstract II
總目錄 III
表目錄 VI
圖目錄 VII
符號說明 XII
第一章 緒論 1
1.1 前言 1
1.2 光電極發展 3
1.3 化學水浴法(CBD, Chemical Bath Deposition) 5
1.4 AgInS2可見光光電極薄膜 7
1.5 文獻探討 8
1.5.1 光觸媒文獻回顧 8
1.5.2 化學水浴法製備薄膜文獻回顧 9
1.5.3 Ag-In-S化合物半導體薄膜文獻回顧 11
1.5.4 摻雜金屬元素後光觸媒效能提升之文獻回顧 14
1.6 研究目的 14
第二章 化學水浴法原理 15
2.1 離子濃度積與溶解度積 15
2.2 成長機制 17
第三章 實驗步驟與方法 20
3.1 實驗參數設定 20
3.2 實驗藥品與實驗裝置 20
3.2.1 實驗藥品 20
3.2.1.1反應鍍液(Ag+、In3+、S2-)使用藥品 20
3.2.1.2銅(Cu)離子摻雜溶液之使用藥品 21
3.2.1.3 薄膜電性分析時配製電解質溶液之使用藥品 22
3.2.2 實驗基材 23
3.2.3 實驗設備 23
3.3 實驗步驟 24
3.3.1 基材清洗 24
3.3.2 鍍液配製 25
3.3.3 反應鍍液配製方法 26
3.3.4 半導體光觸媒薄膜之後處理 27
3.4 薄膜物性量測分析 27
3.4.1 XRD(X-ray Diffraction, X光粉末繞射儀) 27
3.4.2 SEM(Scanning electron microscope, 掃描式電子顯微鏡) 28
3.4.3 EDS(Energy Dispersive Spectrometer, 能量散射光譜儀) 29
3.4.4 UV-visible(紫外/可見光光譜儀) 29
3.4.5 電化學(光電流)量測分析 29
第四章 結果與討論 32
4.1 AgInS2半導體光觸媒薄膜製備 32
4.1.1 反應物濃度比例( [Ag+]/[In3+] )對薄膜的影響 32
4.1.2 pH值(HNO3含量)對薄膜的影響 33
4.1.3 鍍膜層數對薄膜的影響 37
4.1.4 磁石轉速對薄膜的影響 38
4.1.5 燒結溫度對薄膜的影響 39
4.2 銅摻雜之AgInS2半導體光觸媒薄膜製備 40
第五章 結論與未來展望 43
5.1結論 43
5.2未來展望 44
參考文獻 45
表目錄
表一 反應溶液參數表..........................................................................51
表二 銅離子摻雜溶液參數表..............................................................51
表三 量測電性分析所需配製之溶液參數表......................................52
表四 實驗變因與參數設定..................................................................52
表五 薄膜物性檢測儀器表..................................................................53
表六 EDS化學元素分析 [Ag+]/[In3+]=4, 500rpm, 燒結400℃
一小時下鍍一層..........................................................................53
表七 EDS化學元素分析 [Ag+]/[In3+]=4, 500rpm, 燒結400℃
一小時下鍍二層..........................................................................54表八 EDS化學元素分析 [Ag+]/[In3+]=4, 500rpm, 燒結400℃
一小時下鍍三層..........................................................................54表九 EDS化學元素分析 [Ag+]/[In3+]=4, HNO3=15ml, 燒結300℃
一小時下摻雜銅2%....................................................................55
表十 EDS化學元素分析 [Ag+]/[In3+]=3, HNO3=15ml, 燒結300℃
一小時下摻雜銅4%....................................................................55
表十一 EDS化學元素分析 [Ag+]/[In3+]=4, HNO3=15ml, 燒結  
    300℃一小時下摻雜6%..........................................................56
圖目錄
圖1-1 本多-藤島效應系統圖...............................................................57
圖1-2 光電極原理示意圖....................................................................57
圖1-3 太陽能量光譜圖........................................................................58
圖1-4 氧化物光觸媒於犧牲試劑下之產氫與產氧活性....................58
圖1-5 硫化物光觸媒於犧牲試劑下之產氫活性................................59
圖1-6 光觸媒摻雜金屬後之能隙圖....................................................59
圖2-1 化學水浴法成長機制................................................................60
圖2-2 化學水浴法薄膜成長階段示意圖............................................60
圖3-1 清洗基材流程圖........................................................................61
圖3-2 ITO基材封裝後之試片組........................................................61
圖3-3 金屬陽離子溶液調配流程........................................................62
圖3-4 用於摻雜之金屬銅離子溶液配製流程....................................62
圖3-5 化學水浴法流程示意圖............................................................63
圖3-6 化學水浴法實驗設置圖............................................................63
圖3-7 布拉格繞射示意圖....................................................................64
圖3-8 半導體光觸媒薄膜電極封裝示意圖........................................64
圖4-1 HNO3=15ml, 500rpm, 燒結400℃一小時下, 不同反應物濃度
比之光電極薄婆XRD圖譜.......................................................65
圖4-2 [Ag+]/[In3+]=3, 1000rpm, 燒結400℃一小時下, 不同HNO3量
之光電極薄膜XRD圖譜...........................................................65
圖4-3 [Ag+]/[In3+]=4, 500rpm, 燒結400℃一小時下, 不同HNO3量之
光電極薄膜XRD圖譜..............................................................66
圖4-4 反應時間與薄膜生長厚度關係................................................66
圖4-5 pH值與薄膜厚度的關係..........................................................67
圖4-6 [Ag+]/[In3+]=4, 500rpm, 燒結400℃一小時下, HNO3=9ml條
件下之光電極薄膜光電流量測結果........................................67
圖4-7 [Ag+]/[In3+]=4, 500rpm, 燒結400℃一小時下, HNO3=15ml
條件下之光電極薄膜光電流量測結果....................................68
圖4-8 [Ag+]/[In3+]=4, 500rpm, 燒結400℃一小時下, HNO3=21ml
條件下之光電極薄膜光電流量測結果....................................68
圖4-9 [Ag+]/[In3+]=4, 500rpm, 燒結400℃一小時下, 不同HNO3量
之光電極薄膜XRD圖譜..........................................................69
圖4-10 [Ag+]/[In3+]=4, 500rpm, 燒結400℃一小時下不同HNO3量
之光電極薄膜紫外/可見光光譜圖.........................................69
圖4-11 穿透定律示意圖......................................................................70
圖4-12 [Ag+]/[In3+]=4、500rpm、燒結400℃一小時下, 不同HNO3
量之光電極薄膜之能隙..........................................................70
圖4-13 [Ag+]/[In3+]=4, 500rpm, 燒結400℃一小時下, 鍍膜層數不同
之光電極薄膜XRD圖譜........................................................71
圖4-14 [Ag+]/[In3+]=4, 500rpm, 燒結400℃一小時, 鍍一層條件下之
光電極薄膜掃描式電子顯微鏡圖..........................................71
圖4-15 [Ag+]/[In3+]=4, 500rpm, 燒結400℃一小時, 鍍二層條件下之
光電極薄膜掃描式電子顯微鏡圖..........................................72
圖4-16 [Ag+]/[In3+]=4, 500rpm, 燒結400℃一小時, 鍍三層條件下之
光電極薄膜掃描式電子顯微鏡圖..........................................72
圖4-17 [Ag+]/[In3+]=3, HNO3=15ml, 燒結400℃, 一小時下磁石轉速
不同之光電極薄膜XRD圖譜................................................73
圖4-18 [Ag+]/[In3+]=3, HNO3=15ml, 燒結400℃一小時下, 磁石轉速
不同之光電極薄膜紫外/可見光光譜圖.................................73
圖4-19 [Ag+]/[In3+]=3, HNO3=15ml, 燒結400℃一小時, 磁石轉速
500rpm條件下之光電極薄膜光電流量測結果....................74
圖4-20 [Ag+]/[In3+]=3, HNO3=15ml, 燒結400℃一小時, 磁石轉速
750rpm條件下之光電極薄膜光電流量測結果....................74
圖4-21 [Ag+]/[In3+]=3, HNO3=15ml, 燒結400℃一小時, 磁石轉速
1000rpm條件下之光電極薄膜光電流量測結果..................75
圖4-22 [Ag+]/[In3+]=4, HNO3=15ml, 磁石轉速500rpm下, 於不同燒
結溫度之光電極薄膜XRD圖譜............................................75
圖4-23 [Ag+]/[In3+]=4, HNO3=15ml, 磁石轉速500rpm下, 於不同燒
結溫度之光電極薄膜紫外/可見光光譜圖.............................76
圖4-24 [Ag+]/[In3+]=4, HNO3=15ml, 磁石轉速500rpm, 300℃燒結一
小時條件下之光電極薄膜光電流量測結果..........................76
圖4-25 [Ag+]/[In3+]=4, HNO3=15ml, 磁石轉速500rpm, 350℃燒結一
小時條件下之光電極薄膜光電流量測結果..........................77
圖4-26 [Ag+]/[In3+]=4, HNO3=15ml, 磁石轉速500rpm, 400℃燒結一
小時條件下光電極薄膜光電流量測結果..............................77
圖4-27 [Ag+]/[In3+]=4, HNO3=15ml, 燒結300℃一小時下不同摻雜
濃度之光電極薄膜XRD圖譜................................................78
圖4-28 [Ag+]/[In3+]=4, HNO3=15ml, 燒結300℃一小時, 摻雜銅2%
條件下之光電極薄膜掃描式電子顯微鏡圖..........................78
圖4-29 [Ag+]/[In3+]=4, HNO3=15ml, 燒結300℃一小時, 摻雜銅4%
條件下之光電極薄膜掃描式電子顯微鏡圖..........................79
圖4-30 [Ag+]/[In3+]=4, HNO3=15ml, 燒結300℃一小時, 摻雜銅6%
條件下之光電極薄膜掃描式電子顯微鏡圖..........................79
圖4-31 [Ag+]/[In3+]=4, HNO3=15ml, 燒結300℃一小時, 摻雜銅2%
條件下之光電極薄膜光電流量測結果..................................80
圖4-32 [Ag+]/[In3+]=4, HNO3=15ml, 燒結300℃一小時, 摻雜銅4%
條件下之光電極薄膜光電流量測結果..................................80
圖4-33 [Ag+]/[In3+]=4, HNO3=15ml, 燒結300℃一小時, 摻雜銅6%
條件下之光電極薄膜光電流量測結果..................................81
圖4-34 [Ag+]/[In3+]=4, HNO3=15ml, 燒結300℃一小時, 摻雜銅4% 
    條件下之光電極薄膜紫外/可見光光譜圖.............................81
圖4-35 [Ag+]/[In3+]=4, HNO3=15ml, 燒結300℃一小時, 摻雜銅4%
條件下之能隙值......................................................................82
參考文獻 參考文獻
[1] 經濟部能源局-民國96年能源統計年報
http://www.moeaboe.gov.tw/opengovinfo/Plan/all/files/EnergyStatistical
DataBook.pdf
[2] 茂迪股份有限公司網站提供
http://www.motech.com.tw/products/pvmodule/NCTSM168WG61.doc
[3] 經濟部能源局-2007年能源科技研究發展白皮書
[4] J. F. Geisz, D. J. Friedman, J. S. Ward, A. Duda, W. J. Olavarria, T.
E. Moriarty, J. T. Kiehl, M. J. Romero, A. G. Norman, and K. M.
Jones, “40.8% efficient inverted triple-junction solar cell with two
Independently metamorphic junctions,” Applied Physics Letters,
Volume 93, Issue 12, Number 123505, 2008
[5] A. Fujishima, and K. Honda, ”Electrochemical photolysis of water at
a semiconductor electrode,” Nature, Volume 238, Number 5358,
Pages 37-38, 1972
[6] http://www.ibuyplastic.com/admin/technology_insert/tech_images/31
2/untitled1.jpg
[7] T. Bak, J. Nowotny, M. Rekas, and C.C. Sorrell,
“Photo-electrochemical hydrogen generation from water using solar
energy. Materials-related aspects,” International Journal of Hydrogen
Energy, Volume 27, Issue 10, Pages 991-1022, 2002
[8] V. Rakovics , Zs. J. Horváth, Zs. E. Horváth, I. Bársony, C. Frigeri ,
and T. Besagni, “Investigation of CdS/InP heterojunction prepared by
chemical bath deposition,” Physica Status Solidi C, Volume 4, Issue
4, Pages 1490-1493, 2007
[9] B. Pejova, M. Najdoski, I. Grozdanov, and S. K. Dey, ” Chemical bath
deposition of nanocrystalline (111) textured Ag2Se thin films,”
Materials Letters, Volume 43, Issues 5-6, Pages 269-273, 2000
[10] D. Hariskos, M. Powalla, N. Chevaldonnet, D. Lincot, A. Schindler
, and B. Dimmler, “Chemical bath deposition of CdS buffer layer:
prospects of increasing materials yield and reducing waste,” Thin
Solid Films, Volume 387, Issues 1-2, Pages 179-181, 2001
[11] U. Gangopadhyay, K. Kim, D. Mangalaraj, and J. Yi, “Chemical and
structural modifications of laser treated iron surfaces: investigation
of laser processing parameters,” Applied Surface Science, Volume
230, Issues 1-4, Pages 364-370, 2004
[12] S. Biswas, M. F. Hossain, T. Takahashi, Y. Kubota, and A. Fujishima,
“Photocatalytic activity of high-vacuum annealed CdS-TiO2 thin
film,” Thin Solid Films, Volume 516, Issue 21, Pages 7313-7317,
2008
[13] T. Ishiyama, T. Arai, Y. Sato, K. Shinoda, B. Jeyadevan, and K. Tohji
,“Photocatalytic efficiency of CdS film synthesized by CBD
method,” American Institute of Physics Conference Proceedings,
Volume 833, Pages 23-26, 2006
[14] H. Liu, and L. Gao, “Synthesis and properties of CdSe-sensitized
rutile TiO2 nanocrystals as a visible light-responsive
photocatalyst,” Journal of the American Ceramic Society, Volume
88, Issue 4, Pages 1020-1022, 2005
[15] J. L. Shay, B. Tell, L. M. Schiavone, H. M. Kasper, and F. Thiel,
”Energy bands of AgInS2 in the chalcopyrite and orthorhombic
Structures,” Physics Review: B, Volume 9, Issue 4, Page 1719, 1974
[16] H. Kato, and A. Kudo, “Visible-light-response and photocatalytic
activities of TiO2 and SrTiO3 photocatalysts codoped with
antimony and chromium,” Journal of Physical Chemistry B,
Volume 106, Issue 19, Page 5029, 2002
[17] R. Niishiro, H. Kato, and A. Kudo, “Nickel and either tantalum or
niobium-codoped TiO2 and SrTiO3 photocatalysts with visible-light
response for H2 or O2 evolution from aqueous solutions,” Physical
Chemistry Chemical Physics, Volume 7, Issue 10, Pages 2241-2245,
2005
[18] A. Kudo, and Y. Miseki, “Heterogeneous photocatalyst materials for
water splitting,” Chemical Society Reviews, Volume 38, Issue 1,
Pages 253-278, 2009
[19] Y. Lare, A. Godoy, L. Cattin, K. Jondo, T. Abachi, F.R. Diaz, M.
Morsli, K. Napo, M.A. del Valle, and J.C. Berne, “ZnO thin films
fabricated by chemical bath deposition, used as buffer layer in
organic solar cells,” Applied Surface Science, volume 255, Issues
13-14, Pages 6615–6619, 2009
[20] L. H. Lin, C. C. Wu, C. H. Lai, and T. C. Lee, “Controlled
deposition of silver indium sulfide ternary semiconductor thin
films by chemical bath deposition,” Chemistry of Materials,
Volume 20, Issue 13, Pages 4475-4483
[21] J. M. Doña, and J. Herrero, “Process and film characterization of
chemical-bath-deposited ZnS thin films,” Journal of the
Electrochemical Society, Volume 141, Number 1, Pages 205-210,
1994
[22] R. Sahraei, G. Motedayen Aval, A. Baghizadeh, M. Lamehi-Rachti,
A. Goudarzi, and M. H. Majles Ara, “Investigation of the effect of
temperature on growth mechanism of nanocrystalline ZnS thin
films,” Materials Letters, Volume 62, Issue 28, Pages 4345-4347,
2008
[23] T. Ben Nasr, N. Kamoun, M. Kanzari, and R. Bennaceur, “Effect of
pH on the properties of ZnS thin films grown by chemical bath
deposition,” Thin Solid Films, Volume 500, Issues 1-2, Pages4-8,
2006
[24] L.V. Makhova, I. Konovalov, R. Szargan, N. Aschkenov ,M.
Schubert, and T. Chassé, “Composition and properties of ZnS thin
films prepared by chemical bath deposition from acidic and basic
solutions,” Physica Status Solidi C, Volume 2, Issue 3, Pages 1206-
1211, 2005
[25] A. F. Qasrawi, and N. M. Gasanly,” Crystal data, electrical
resistivity, and hall mobility of n-type AgIn5S8 single crystals,”
Crystal Research and Technology, Volume 36, Issues 4-5, Pages
457-464, 2001
[26] A. Aquilera, M. L., Aquilar Hernandez, J., Orteqa-Lopez, M.,
Sanchez, V. M., Gonzalez Trujillo, M. A., “Some physical
properties of chalcopyrite and orthorhombic AgInS2 thin films
prepared by spray pyrolysis,” Materials Science and Engineering: B,
Volume 102, Issues 1-3, Pages 380-384, 2003
[27] Y. Akaki, S. Kurihara, M. Shirahama, K. Tsurugida, S. Seto, T.
Kakeno, and K. Yoshino, “Structural, electrical and optical
properties of AgInS2 thin films grown by thermal evaporation
method,” Journal of Physics and Chemistry of Solids, Volume 66,
Issue 11, Pages 1858-1861, 2005
[28] J. Q. Hu, B. Deng, K. B. Tang, C. R. Wang, and Y. T. Qian,
“Preparation and phase control of nanocrystalline silver indium
sulfides via a hydrothermal route,” Journal of materials research,
Volume 16, number 12, Pages 3411-3415, 2001
[29] T. C. Deivaraj, J. H. Pard, M. Afzaal, P. O’Brien, and J.
Vittal,“ Single-source precursors to ternary silver indium sulfide
materials,” Chemical Communications, Volume 22, Issue 22, Pages
2304-2305, 2001
[30] A. Kudo, R. Niishiro, A. Iwase, and H. Kato, “Effects of doping of
metal cations on morphology, activity, and visible light response of
photocatalysts,” Chemical Physics, Volume 339, Issues 1-3, Pages
104-110, 2007
[31] H. Meherzi-Maghraoui, M. Dachraoui, S. Belgacem, K. D. Buhre,
R. Kunst, P. Cowache, and D. Lincot, “Structural, optical and
transport properties of Ag2S films deposited chemically from
aqueous solution,” Thin Solid Films, Volume 288, Issues 1-2, Pages
217-223, 1996
[32] C. D. Lokhande, A. Ennaoui, P. S. Patil, M. Giersig, K. Diesner, M.
Muller, and H. Tributsch, “Chemical bath deposition of indium
sulphide thin films: preparation and characterization,” Thin Solid
Films, Volume 340, Issues 1-2, Pages 18-23, 1999
[33] P. O’Brien, and J. McAleese. "Developing an understanding of the
processes controlling the chemical bath deposition of ZnS and CdS,”
Journal of the Materials chemistry, Volume 8, Issue 11, Pages 2309
-2314, 1998
[34] H. Y. Xu, H. Wang, T. N. Jin, and H. Yan, “Rapid fabrication of
  luminescent Eu:YVO4 films by microwave-assisted chemical
solution deposition,” Nanotechnology, Volume 16, Number 1, Pages
65-69, 2005
[35] http://xrayweb.chem.ou.edu/images/bragg.gif
[36] R. Zhai, S. Wang, H. Y. Xu, H. Wang, and H. Yan, “Rapid
formation of CdS, ZnS thin films by microwave-assisted chemical
bath deposition,” Materials Letters, Volume 59, Issue 12, Pages
1497-2501, 2005
指導教授 洪勵吾(Lih-Wu Hourng) 審核日期 2009-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明