博碩士論文 84343005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:3.21.158.224
姓名 褚文和(Wen-Hou Chu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 SMAW焊接系統的動態與控制
(Automatic SMAW Controlling System Dynamics And Control)
相關論文
★ 自動平衡裝置在吊扇上之運用★ 以USB通訊界面實現X-Y Table之位置控制
★ 液體平衡環在立式轉動機械上之運用★ 液流阻尼裝置設計與特性之研究
★ 液晶電視喇叭結構共振異音研究★ 液態自動平衡環之研究
★ 抑制牙叉式機械臂移載時產生振幅之設計★ 立體拼圖式組合音箱共振雜音消除之設計
★ 電梯纜繩振動抑制設計研究★ 以機器學習導入電梯生產結果預測之研究
★ 新環保冷媒R454取代R410A冷媒迴轉式單缸壓縮機效能分析與可靠性驗證★ 高速銑削Al7475-T7351的銑削參數與基因演算法研究
★ 自動化鞋型切削機之設計與實現★ 以FPGA為基礎之精密位置控制IC
★ CNC三維圓弧插補器★ PID與模糊控制在營建工程自動化的探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
本論文描述自動遮蔽金屬電弧焊接控制系統的發展,它可以取代需要良好訓練的技工手動焊接操作,有幾種控制方法被應用到這個焊接系統控制上。
首先,我們推導此焊接控制系統的數學模型,它主要由一交流伺服馬達驅動之焊條進給控制機構所組成。當此一系統被當成焊條進給速度控制機構時,我們可以把它當成一階或二階動態系統,”Matlab IDENTIFICATION Tool Box”被用來估測此一階或二階動態系統的最佳合適的參數值。
之後,一個模糊增益程序PID控制器,調節一階的焊條進給控制機構,以控制電弧電流之大小,具有此種控制器,並以交流伺服馬達驅動的焊條進給控制機構,在操作期間,可以補賞熔掉的焊條部份,也可以穩定不必要的電弧長度變動,這種控制技術,很容易被應用到任何其他種類之消耗性電極的焊接過程。再者,適應性滑動模態控制器可以估測不定量的上界,並且利用調節焊條進給,以控制電弧電流的大小,我們以實驗檢測適應性滑動模態控制器的性能,模擬與實驗皆顯示滑動模態的確發生了。
滑動面可以被用來作為模糊控制器的前件部,以簡化其推論法則,對於這個適應性模糊滑動模態控制器,我們使用適應性定律,以更新模糊控制器的後件部,去逼近傳統滑動模態控制器的等量控制,調整焊條進給機構,以控制電弧電流的大小。此為我們用來控制SMAW焊接系統之控制器的一種,使用這種控制器,焊接電流的穩定性,焊珠的均勻性,焊道噴濺的降低量,皆大大的改善。
最後,介紹一個使用單一模糊輸入變數的適應性模糊控制器,基於FLC控制法則與具有邊界層厚度的普通SMC之間的相似性,與傳統之二維FLC的推論規則相比較,單輸入符號距離可以被用來降低FLC的推論規則數。適應性定律再一次地被使用,作為FLC的參數,以便逼近傳統滑動模態控制器的等量控制,以致於系統的狀態被迫趨近於零,因此,可以保證此一控制器的穩定性。此控制器的可行性及簡單性以SMAW系統的模擬加以驗證,結果顯示,期望的滑動模態特性的確發生了,實驗之結果顯示所提控制器的可行性,並且也顯示它能有效的執行焊接控制工作,此外,起弧亦非常地容易。
摘要(英) Abstract
This thesis describes an automatic welding control system developed for alternating current shield metal arc welding (SMAW). It can replace manual operations which require a well-trained technician. Several methods are applied to control this SMAW welding system.
First, we derive a mathematical model of the welding control system, which consists primarily of an electrode feed-rate mechanism driven by an AC servomotor. Both first-order and second-order dynamics are used to represent this mechanism, when we consider it for an electrode feed-rate velocity control system. The “Matlab IDENTIFICATION Tool Box” is used to estimate the best-fit values of the parameters of the welding control system, using first-order and second-order dynamics, respectively.
A Fuzzy Gain scheduling PID controller can be used to modulate the rate of the first-order electrode feed-rate mechanism that regulates the arc current. The electrode feed-rate mechanism for this controller is driven by an AC servomotor which can both compensate for the molted part of the electrode and for the undesirable fluctuations of the arc length during welding operation. It can also be easily applied to any welding system where the electrode is consumed during the welding process. Furthermore, an adaptive sliding mode controller can estimate the uncertainty bounds, and modulate the rate of the electrode feed mechanism regulating the arc current. We also examine the performance of this adaptive sliding mode controller experimentally. The simulations and the experiments both show that the sliding mode occurs.
The sliding surface can be used to as antecedent part to simplify the inference rule base for the fuzzy logic control (FLC). An adaptive fuzzy sliding mode controller uses an adaptive law to update the consequent part of the FLC to approximate the equivalent control of a conventional sliding mode control, modulating the rate of the electrode feeding mechanism that regulates the arc current. This is one method that we have applied to control the SMAW system. The stability of the arc welding current, the uniformity of the welding beads, and the reduction of spatter generation all can be dramatically improved by using this control method.
Finally, in this thesis, we introduce an adaptive fuzzy logical controller design using a single fuzzy input variable signed distance . Based on the similarity between the control rule table of the prevalent FLCs and an ordinary SMC with a boundary layer, the single input variable signed distance can be used to reduce the number of fuzzy reasoning rules, compared to the conventional two-dimensional FLCs. Again, an adaptive law is used to obtain the FLC parameters, and is applied to approximate the equivalent control part of the SMC, so that the system states can be forced to zero, thus guaranteeing the stability of the adaptive fuzzy signed distance sliding mode control. The feasibility and the simplicity of this controller for an SMAW system is verified by a simulation. The results show that the expected approximation of the sliding property occurs. The experimental results verify the feasibility of the proposed controller and also show that it can effectively perform arc welding, as well as effectively initiate the welding arc.
關鍵字(中) ★ PID控制
★ 適應性控制
★ 滑動模態控制
★ 模糊控制
★ 焊接
關鍵字(英) ★ sliding
★ welding
★ control
★ PID
★ mode
★ adaptive
★ fuzzy
論文目次 中文目錄
摘要…..…………….…………….…………….…………….…………..……….二
第一章 緒論………….…………..…………….……………………….…. . .四
第二章 自動焊接控制系統數學模型………….………..…….... .十二
第三章 使用SMAW 自動焊接系統發展….…….….…..…. . . .十三
第四章 適應性滑動模態控制自動焊接系統之發展.............十四
第五章 適應性模糊滑動模態控制自動焊接系統之發展..十五
第六章 適應性模糊符號距離滑動模態控制器之設計…..十六
第七章 結論與未來的工作….……..……….…………….……….. .十七
Contents
Abstract……………………………………………………………..……………….IV
List of Figures………………………………………………………………….……VI
List of Tables…………………………………………..………………………….….X
Chapter 1 Introduction
1.1 Motivation……………………………………………………………………..1
1.2 Literature Survey……………………………………….…………..………....2
1.3 Organization………………………………….………………………………..8
Chapter 2 Dynamic Model for the Automatic SMAW controlling system
2.1 Introduction……………………………………………………………………9
2.2 Automatic Shielded Metal Arc Welding System Control System Modeling….9
2.2.1 Electrode Feed-rate Mechanism………………………………………….…9
2.2.2 System Identification……………………………………………………….13
2.3 Experimental Device…………………………………………………..……..16
2.4 Current Sensor………………………………………………………………..16
2.5 Peripheral Interface…………………………………………………..………17
2.5.1 A/D converter………………………………………………………………17
2.5.2 D/A converter………………………………………………………………17
2.6 Control Algorithm Implementation…………………………………………..18
Chapter 3 Development of an Automatic Arc Welding System Using the SMAW Process
3.1 Introduction…………………………………………………………………..26
3.2 Dynamic System Modeling …..……………………………………………..28
3.3 Control Methods and Simulation Results……….………….………………..31
3.4 Experimental Equipments and Results………….………..…………………..34
3.5 Conclusion……………………………………………………………………36
Chapter 4 Development of an Automatic Arc Welding System Using a Sliding Mode Control
4.1 Introduction……………….……………………………………..……….…..44
4.2 Dynamic System Modeling……………….…………..……………………...45
4.3 System Identifications……………….……………………………………….47
4.4 Control Methods and Simulation Results………………….…………………48
4.5 Adaptive Sliding Mode Arc Current Controller…………….………………..50
4.6 Experimental Equipments and Results ………………….….………………..53
4.7 Conclusion ……………….………………………….……………………….54
Chapter 5 Development of an Automatic Arc Welding System Using an Adaptive Fuzzy Sliding Mode Control
5.1 Introduction……………….…………………………………………………60
5.2 Dynamic System Modeling……………….…………..……………………..62
5.3 System Identifications……………….…………..………………………..…64
5.4 Control Methods and Simulation …………………………………..………..65
5.5 Adaptive Fuzzy Sliding Mode Controller ……….……………………………….67
5.6 Experimental Equipment and Results……….……………………………….71
5.7 Conclusion……………….………………………….……………………….73
Chapter 6 A Design for an Adaptive Fuzzy Signed Distance Sliding Mode Control
6.1 Introduction ……………….…………………………………………………79
6.2.1 Basic Signed Distance Fuzzy Logic Control Concept……………………..81
6.2.2 Basic Concept Behind the Fuzzy Sliding Mode Control..…….….………..84
6.2.3 Some Fuzzy Logic Control Definitions……….….………………………..84
6.2.4 Sliding Mode Control……………….……………………………….……..85
6.2.5 Adaptive Fuzzy Signed Distance Sliding Mode Control…..….…………...87
6.3 Computer Simulations and Experimental Results..….…………………….....90
6.4 Conclusion……………….…………………….……………………………..92
Chapter 7 Conclusion and Future Works
6.1 Conclusions…………………………………………………………………100
6.2 Future Works………………………………………………………………..101
Appendix……………….………………………….……………..……………..102
References……………….……………………….……………..………………103
Author Information……………….………………………….…………………108
參考文獻 References
1 Dave Smith, Welding Skills and Technology, McGraw-Hill Book Co., 1989.
2 B.C. Howard, Modern Welding Technology, Prentice-Hall, Inc. Englewood Cliffs, 1979.
3 Y. M. Zhang, E. Liguo, B.L. Walcott, ” Interval model based control of gas metal arc welding,” IEEE International Conference, American Control Conference, pp. 1752 -1756, Vol. 3, 1998.
4 P. Verdelho, P. M. Silva, E. Margato, J. Esteves, ” An electronic welder control circuit,” IEEE International Conference, Industrial Electronics Society, pp. 612 -617 Vol. 2, 1998.
5 H. Yamamoto, “The Development of Welding Control System for spatter reduction,” Welding International, Vol.4, No.5, pp. 398-403, 1990.
6 M. Abdelrahman, ”Feedback linearization control of current and arc length in GMAW systems,” IEEE International Conference, pp. 1757 -1761 vol.3, 1998.
7 Y. M. Chae, G..H. Choe, “A New Instantaneous Output Current Control Method for Inverter Arc Welding Machine,” IEEE, PRCS’99 Proceeding, Vol. 1, pp.521-528, 1999.
8 J. G.. Ziegler, N. B. Nichols, “Optimum settings for automatic controllers,” Trans. ASME, Vol.64, pp.759-768, 1942.
9 C. C. Lee, “Fuzzy logic in control system: Fuzzy logic controller, Part I,” IEEE Trans. Syst., Man, Cubern., vol. SMC-20, pp. 404-418, 1990.
10 C. C. Lee, “Fuzzy logic in control system: Fuzzy logic controller, Part II,” IEEE Trans. Syst., Man, Cubern., vol. SMC-20, pp. 419-435, 1990.
11 H. T. Nguyen, C. W. Tao, W. E. Thompson, “An Empirical Study of Robustness of Fuzzy System,” Proc. Of 2nd IEEE Intl. Conf. on Fuzzy System, pp. 1340-1345.
12 M. Mizumoto, “Realization of PID controls by fuzzy control methods,” Fuzzy sets and systems, Vol.70, pp.171–182, 1995.
13 A. Visioli, “Tuning of PID controllers with fuzzy logic,” IEE Proc. Control Theory Appl., Vol.148, No.1, pp.1-8, 2001.
14 A. Visioli, “Optimal tuning of PID controllers for integral and unstable processes,” IEE Proc. Control Theory Appl., Vol.148, No.2, pp.180–182, 2001.
15 T. P. Blanchett, G. C. Kenber, R. Dubay, “PID gain scheduling using fuzzy logic,” ISA TRANSCATIONS, Vol.39, pp.317–325, 2000.
16 Z. Y. Zhao, M. Tomisuka, and S. Isaka, “Fuzzy Gain Scheduling of PID Controllers,“ IEEE Transactions on system, Vol.23, No.5, pp.1392-1398, 1993.
17 T. S. Hu, Arc welding, second edition, Machine Industrial Book Co. Peking, China, pp. 91-92, 1994.
18 Y. T. Zheng, S. S. Hang, Arc welding power supply, second edition, Machine Industrial Book Co. Peking, China, pp. 22-30, 1987.
19 B. K Bose, “Sliding mode control of induction motor,” IEEE/IAS Conference Record, pp. 479-486, 1985.
20 V. I. Utkin, “Sliding mode control design principles and applications to electric devices,” IEEE Trans. Ind. Electronic, Vol. 40, No. 1, pp. 23-36, 1993.
21 L. I. Slotine, Applied nonlinear control, Prentice-hall, Inc. Englewood Cliffs., pp.353-358, 1991.
22 S. L. Chiu, K. K. Shyu, “Novel Sliding Mode Controller for Synchronous Motor Drive,” IEEE Trans. On Aerospace and Electronic System, 34 (2) April, pp. 532-542, 1998.
23 Y.T. Zheng, S. S. Hang, Arc welding power supply, second edition, Machine industrial book co. Peking, pp. 22-30, 1987.
24 B. K. Bose, Power Electronics and AC Drives, Prentice-hall, Inc. Englewood Cliffs., pp. 155-159, 1986.
25 K.S. Narendra, A.M. Annaswamy, Stable Adaptive System, Prentice-Hall, 1989, 104-107.
26 P. C. Tung, K. Lo, “Application of Self-tuning Fuzzy Controller for a Cartesian Manipulator on Unknown Contours,” International Journal of Machine Tools & Manufacture, Vol. 40, 943-955.
27 E. M. Mamdani, “Application of Fuzzy Algorithms for Control of Simple Dynamic Plant,” Proc. IEE, Vol. 121, no. 12, 1974, pp. 1585-1588.
28 M. C. Shih, C. S. Lu, “Fuzzy Sliding Mode Position Control of a Ball Screw Driven by Pneumatic Servomotor,” Mechatronics, Vol. 5, No. 4, 1985, pp. 421-431.
29 C. Ling, E. F. Thomas, “Experimental Verification of Model Based Fuzzy Gain Scheduling Technique,” Proceeding of the American Control Conference Baltimore, Maryland, 1994, June, pp. 2475-2480.
30 B. J. Choi, S. W. Kwak, B. K. Kim, “Design of a Single-input Fuzzy Logic Controller and its Properties,” Fuzzy Sets and Systems, Vol. 106, 1999, pp. 299-308.
31 S. Y. Chen, F. M. Yu, H. Y. Chung, “Decoupled Fuzzy Controller Design with Single-input Fuzzy Logic,” Fuzzy Sets and Systems, Vol. 129, 2002, pp. 335-342.
32 V. I. Utkin, “Variable structure systems with sliding modes,” IEEE Trans. Automat. Control, Vol. 22, 1977, pp.212-222.
33 R. Palm, “Sliding Mode Fuzzy Control,” IEEE International Conf. on Fuzzy Systems FUZZ-IEEE ' 92, San Diego Proceeding, pp. 519-526, 1992.
34 G. C. Hwang, S. C. Lin, “A stability approach to Fuzzy control design for nonlinear systems,” Int. J. Fuzzy Sets and Systems, Vol. 48, pp. 279-287, 1992.
35 S. Y. Yi, M. J. Chung, “Robustness of Fuzzy Logic Control for an Uncertain Dynamic System,” IEEE TRANSACTION ON FUZZY SYSTEMS, Vol. 6, No. 2, pp. 216-225, MAY, 1998.
36 S. C. Lin, Y. Y. Chen, “Design of Adaptive Fuzzy Sliding Mode for Nonlinear System Control,” IEEE Int. Conf. on Fuzzy Systems, Orlando, pp. 35-39, 1994.
37 L. X. Wang, “Stable Adaptive Fuzzy Control of Nonlinear System,” IEEE TRANSACTION ON FUZZY SYSTEMS, Vol. 1, No. 2, pp. 146-155, MAY, 1993.
38 H. X. Li, S. Tong, “A Hybrid Adaptive Fuzzy Control for a Class of Nonlinear MIMO System,” IEEE TRANSACTION ON FUZZY SYSTEMS, Vol. 11, No. 1, pp. 24-34, Feb. 2003.
指導教授 董必正(Pi-Cheng Tung) 審核日期 2004-6-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明