博碩士論文 86343006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:18.219.53.175
姓名 王革創(Ger-chwang Wang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 微量切削之刀具與夾具整合設計與分析研究
(The Study of an Integrated Tool and Fixture Design for Micro-Volume-Machining Processes)
相關論文
★ 運用化學機械拋光法於玻璃基板表面拋光之研究★ 電泳沉積輔助竹碳拋光效果之研究
★ 凹形球面微電極與異形微孔的成形技術研究★ 運用電泳沉積法於不鏽鋼鏡面拋光之研究
★ 電化學結合電泳精密拋光不銹鋼之研究★ 純水中的電解現象分析與大電流放電加工特性研究
★ 結合電化學與電泳沉積之微孔複合加工研究★ 放電加工表面改質與精修效果之研究
★ 汽車熱交換器用Al-Mn系合金製程中分散相演化及再結晶行為之研究★ 磁場輔助微電化學銑削加工特性之研究
★ 磁場輔助微電化學鑽孔加工特性之研究★ 微結構電化學加工底部R角之改善策略分析與實做研究
★ 加工液中添加Al-Cr混合粉末對工具鋼放電加工特性之影響★ 不同加工液(煤油、蒸餾水、混合液)對鈦合金(Ti-6Al-4V)放電加工特性之影響
★ 放電與超音波振動複合加工添加TiC及SiC粉末對Al-Zn-Mg系合金加工特性之影響★ 添加石墨粉末之快速穿孔放電加工特性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 對於較少污染的切削加工,如免用或使用微小量切削液,可稱為綠色環保切削,而微量切削可達到這目標。根據此種環保趨勢,再由工件幾何特徵及加工精度設計最合適的微量切削之夾具與刀具系統,完成所需切削加工,當可稱此為微量切削系統。要達成前述目的,就必須將該系統分成夾具次系統與刀具次系統。在夾具研究部分,首先以能達加工次微米精度為目標。有關刀具系統部分,必須基於切削特徵進行研究。
精密定位夾具延伸應用在微小姿態形成或成形切削,其自由度必須大於3。複合加工如銑拋削,也必須滿足相同需求。為避免組裝間隙的遲滯現象,要求夾具為複雜的一體成型之適服機構(compliant mechanism),且更容易製造也是必須的。因此,為了精密產生多軸微運動,研究一個由彈塑性撓性平台與壓電致動器結合之彈塑性撓性夾持機構。此系統適當分析後,設備被設計符合撓性機構的作動原理。實驗結果顯示雖然夾具為彈塑性材料,一旦確定滿足所提標準狀況下之設計參數,微運動的產生符合預期,而且勁性是準線性。應用於實際微量銑削可達Ra 0.4的表面粗度。
切削刀具新數學模式利用角度實體方塊法找尋設計參數間的關係。刀尖附近切削參數必須定義互為相依關係,以便有類似鑿刃(或是刀尖)幾何的不確定性能被避免。新數學模式在鑿刃及主切刃的效應顯現在本研究中。另外,延伸再發展一新方法以設計形狀銑刀用於銑削精確的複合自由曲面。此研究中,刀斜面、螺旋槽及餘隙刀腹的交點由於在設計及研磨佔有重要地位,必須適當地定義。角度實體方塊分析再被發展以建立形狀刀具實體幾何模型。因此,一個滿足切削特徵的新形狀銑刀能被設計。此外,刀具幾何模型方法被用於以最小量測點的量測策略以驗証正確的刀具幾何圖像。
摘要(英) For a low-pollution required machining process, the Micro-Volume-Machining without cooling liquid is a new trend. Designing an appropriate fixture and tool system based on workpiece geometry characteristics and machining precision is called Micro-volume-machining system. For achieving above objection, the system needs to be devided into fixture subsystem and tool subsystem. Initially, reaching submicrometer is the first goal in the research of fixture design. And, the tool system needs to be studied based on machining characteristics.
To perform miniature shape or form machining instead of precise positioning only, the degree of freedom of flexure must be greater than 3. The hybrid machining, such as mill-polishing, must gratify the same requirements either. The need of more intricate functions means not only a more elaborate monolithic and compliant mechanism but more easily made are compulsory. Accordingly, this paper presents an elastic-plastic flexure hinge mechanism (EPFHM) for precisely generating a muliti-axis micro-motion, which is made by elastic-plastic flexure hinge stage (EPFHS) and piezoelectric actuator (PZT). After the appropriate analysis of the system, the device is designed to meet with the prerequisites of flexure hinge mechanism. As long as the certain fulfilled design parameters under the condition of the purposed criteria, the results of experiment reveal that the stiffness is quasi-linear even with the application of elastic-plastic material and the micro-moving is generated in accordance with the anticipated demand. Micro-milling experiment with X-Y-A-B flexure fixture results concealed that the surface roughness is approxing to Ra 0.4 .
A new mathematical model for cutting tool is developed using angle-solid-block approach to find the relationship of design parameters. The design parameters around cutter tip need to be defined as dependent relationship one another in order that the uncertainty of chisel edge and main cutting edge determined by existed model can be avoided. The effects of the new mathematical model on the geometry of chisel edge and main cutting edge are shown in this paper. In addition, the extensive study presents a new approach to design a form milling cutter for precisely obtaining the complex free-form surfaces. In this study, the intersection point of rake surface, helix flute and clearance flank is appropriately defined due to its significant role in the design and grinding performance. The angle-solid-block analysis is developed to establish the solid geometry model of new form milling cutter. Hence, a new form milling cutter satisfying the requirements of machining characteristics of workpiece can be designed. In addition, the cutter geometric model can be adopted to map out the measuring strategy with minimum measured points to attain the exact geometric feature of cutter.
關鍵字(中) ★ 圓柱方塊相切聯集體
★ 形狀銑刀
★ 特徵點
★ 準線性
★ 多面鑽
★ 彈塑性撓性夾持機構
★ X-Y-A-B夾具
★ X-Z-B夾具
★ 一體成型
★ 微量切削系統
★ 切削特徵
★ N段刃
★ 角度實體模式
關鍵字(英) ★ geometry characteristic
★ Micro-motion
★ X-Z-B fixture
★ monolithic
★ X-Y-A-B fixture
★ Micro-positioning
★ Elastic-plastic flexure hinge mechanism(EPFHM)
★ PZT
★ N-segments cutting edges
★ angle-solid model
★ Multifacet drills
★ angle-soli
★ Rapid prototyping(RP)
★ always norma
論文目次 目 錄
中文摘要......................................................................I
英文摘要......................................................................... III
謝誌........................................................................... V
目錄.........................................………………….............. VII
表目錄..........................................................................XII
圖目錄..........................……………………………….................. XIII
符號說明…………………………………………………………XIX
中英對照…………………………………..……………………….XXIII
第一章 緒論……………………………………………………….…1
1-1研究動機與目的……………………………………………..1
1-2 研究的背景………………………………………………….3
1-2-1非傳統夾具技術的演進…….……………………………3
1-2-2快速成型機的普遍………….……………………………3
1-2-3五軸NC程式的進步……………………………………3
1-2-4 檢測法演進…….…………………….……………………4
1-2-5 形狀切削刀具幾何模式的演進…………………………4
1-2-6 CAD幾何運算法演進……………………………………5
1-2-6-1 線架構…………………………….……………..….5
1-2-6-2 二次曲面………………………….……………..….5
1-2-6-3 實體模型………………………….……………..….5
1-2-6-4 參數設計………………………….……………..….6
1-2-6-5 物件導向之參數設計…………….……………..….6
1-2-7研磨工具及方法演進……………………………………6
1-2-8 傳統加工複合化…………..………………………………7
1-3文獻回顧………………………………………………………8
1-3-1 撓性夾具研究……………..……………………………8
1-3-2 刀具幾何研究………………….………………………9
1-4 研究方法……………………………………………………..17
1-5 本論文之構成………………………………………………..19
第二章 夾具機構系統……………………………………………….27
2-1 前言…………………………………………………………27
2-1-1 夾具與刀具系統………..….……………………………27
2-1-2 夾具系統研究方法…….………………………………28
2-2 力量與變形關係式……………………………….………….30
2-2-1 平移位移量之表示式…….……………………………30
2-2-2 旋轉位移量之表示式…….……………………………31
2-2-3 位移對電壓的平移及旋轉之一般式…………………33
2-3 三軸X-Z-B運動之彈塑性撓性夾具之設計與分析……..…35
2-3-1 輸入/輸出關係……….………………………………….35
2-3-2 夾具設計與分析………………………………….….38
2-3-2-1 PZT施力位置分析………………….…….……..39
2-3-2-2 合適位移的行程及表示式…….……………..….40
2-4 三軸X-Z-B運動之彈塑性撓性夾具之實驗…………..…41
2-4-1 夾具的勁度…………………………………………….41
2-4-2 系統特性…………………………………………….…41
2-4-2-1 PZT輸出的位移實驗…………….……………..….42
2-4-2-2 系統轉換函數…………..….…………………..….43
2-5 改良型四軸X-Y-A-B運動之彈塑性撓性夾具之設計與分析.44
2-5-1 原 夾具缺點及限制…………………………..44
2-5-2 改進方向……..………………………………………...44
2-5-3 設計變更……………………………………………….45
2-5-4 有限元素分析……………………………………….…45
2-6 改良型四軸X-Y-A-B運動之彈塑性撓性夾具之實驗…..…47
2-6-1 K值試驗……………………………………………..…47
2-6-2 輸入/輸出試驗………………………………………..…47
2-6-3 切削試驗……………….……………………………..…48
2-7 討論…………….…………………….…………………..…49
2-7-1 平台的可用區間規格之定義…………………………..49
2-7-2 歸零及施力點的效應…………………..………………..49
2-7-2-1 夾具的歸零效應………………………………….49
2-7-2-2 平台的摩擦及作用點效應……………………….50
2-7-3 工作平台的精度驗証………………………….……....51
2-7-4 改良型四軸撓性夾具之設計與分析之初步成果…….51
2-7-5 改良型四軸撓性夾具應用於切削…………………….51
2-7 結論………………………………………….………………..52
第三章 利用角度實體之多面鑽新數學模式─一維切削之多刀腹多刀面刀具……………………………………………….………….78
3-1前言……………………………………………………………78
3-2 實體模型演算法及多面鑽幾何模式的回顧……………….80
3-3 數學模式…………………………………………….……….81
3-3-1 鑽腹1數學模式….……………………………………..81
3-3-2 鑽腹2數學模式…….………………………………….81
3-3-2-1 鑽腹2角度實體解析….………………………….81
3-3-3 鑽腹3數學模式……………………………………..…83
3-3-3-1 鑽腹3角度實體模式分析…………………….……83
3-4 多面鑽幾何的實體模式化………………………………….84
3-4-1 刀槽的推展…………………………………………….85
3-4-2 鑽腹2建立程序…………………………………..…85
3-4-3 鑽腹3構建……………………………………………88
3-5 討論與驗証…………………………………………………89
3-5-1 D83的建立……………………………………………..89
3-5-2 新模型建立………………………………………………90
3-5-3 與D83的比較……………………………………….90
3-6 結論………………………………………….………………..91
第四章 基於加工特徵之精密成形銑刀之幾何設計模式─三維切削之多刀腹多刀面刀具………………………………………..…….116
4-1 前言………………………………………………………….116
4-1-1 研究動機……………………………………………....116
4-1-2 文獻回顧……..…………………………………………116
4-1-3 研究指引…………………………………………….…117
4-2 正交演算法…………………………………………………119
4-2-1 恒垂直分類…………………………………………….119
4-2-1-1 赫米曲線(Hermite curve)………………………..119
4-2-1-2 圓弧……………………………………………..….119
4-2-2 適合準正交之幾何通式………………………………119
4-2-2-1 多段刃輪廓方程及刀具幾何資料簡述…………...119
4-2-2-2 準正交的N段刃刀具幾何………………………..120
4-3 工件及刀具輪廓幾何特徵………………………………..120
4-3-1 定義工件與刀具間幾何特徵…………………………..120
4-3-2 設計高精度形狀刀具的主要方法……………………121
4-3-2-1 刀具斷面輪廓之特徵點的定義…………………..121
4-3-2-2 工件特徵點對應至刀具斷面輪廓………………...121
4-3-2-3 特徵點上的切線向量的決定………………….…...121
4-4 刀具模型切削參數之角度實體方塊法…………………...122
4-4-1 藉助角度實體方塊分析設計參數的關係……….…...122
4-4-1-1 刀斜面………………………..……………………..122
4-4-1-2 餘隙面…………………………………..………….123
4-4-2 量測及定位用的角度實體方塊………………….…..123
4-5 刀具幾何設計程序及電腦輔助建模……………………..124
4-5-1 切刃幾何………………………….……………………124
4-5-2 準垂直之切刃研磨路徑……………………….………125
4-5-3 電腦輔助建模…………………………………………..126
4-5-3-1 參數選擇………………………………………….126
4-5-3-2 電腦輔助建模之角度實體方塊…………………..126
4-5-3-3 布林運算………………………………….……....127
4-6 驗証…………………………………….…………..………127
4-6-1 驗証規則…………………………………..…………..127
4-6-2 虛擬模型之驗証程序…………………………………128
4-6-2-1 工件幾何特徵的刀具……………………………...128
4-6-2-2 由赫米研磨切刃的幾何正確性…………………..128
4-6-2-3 以赫米曲線為準之雲形曲線誤差(僅作二維斷面輪廓)……………………………………………………..129
4-6-3 從設計至量測的驗証…………………..………………129
4-6-4 驗証結論…………………………………………….130
4-7結論………………………………………………………….131
第五章 基於加工特徵之精密成形銑刀之未變形切屑幾何……….149
5-1 前言………………………………………………………….149
5-2 三維未變形切屑幾何模式………………………………..149
5-2-1 三軸銑削之未變形切屑之定義………………………..149
5-2-2 三軸銑削未變形切屑之角度實體方塊………………..151
5-2-3 求未變形切屑關鍵點之座標…………………….…..151
5-2-4 側斜角 ………………………………………………152
5-2-5 未變形切屑邊界………………………………………153
5-3 驗証……………………………………………………….155
5-3-1 實例一………………………………………………….155
5-3-2 實例二…………………………………………….….155
5-3-3 實例三………………………………………………...156
5-3-4 實例四……………………………………………..….156
5-4 討論………………………………………………………….157
5-5結論………………………………………………………….157
第六章 總結論及未來研究…………………………………….…169
6-1 總結論…………………………………………………..…169
6-2 未來研究………………………………………………….…171
參考文獻……………………………………………………………176
附錄A 求量測角 ………………………………..………………183
附錄B 驗証步驟……………………………………………………184
作者簡介………………………………………………………………186
參考文獻 參考文獻
[1] 賴昆輝,撓性車削系統之微細車削特性研究,碩士論文,國立海洋大學,2005。
[2] L. Hazra, H. Kato, T. Kuroda, Y. Hashimoto, Y. Tsuchiya, I. Sakuma, Practical inspection system of drill geometry by using simple measurement jig and image processing, Precision Engineering. 25 (2001) 206-211.
[3] C. Bradley, V. Chan, A complementary sensor approach to reverse engineering, ASME Journal of Manufacturing Science and Engineering, 123 (2001) 74-82.
[4] I. Ainsworth, M. Ristic, D. Brujic, CAD-Based Measurement Path Planning for Free-Form Shapes Using Contact Probes, Int J Adv Manuf Technol, Vol. 16 (2000), pp. 23-31.
[5] S. Fujii, M.F. Deveries, S.M. Wu, An analysis of drill geometry for optimum drill design by computer, part 1: Drill geometry analysis, ASME J. of Eng. for Industry 92 (1970) 647-656.
[6] S. Fujii, M.F. Deveries, S.M. Wu, An analysis of drill geometry for optimum drill design by computer, part 2: Computer aided design, ASME J. of Eng. for Industry 92 (1970) 657-666.
[7] K.H. Fuh, G.C. Wang, C.C. Tai, Computer aided design for drill geometry by quadratic surface model, Conf. on Production Research, UNIV. of Stuttgart, West Germany, 1985.
[8] S.M. Wu, J.M. Chen, Mathematical model for Multifacet drills, ASME J. of Eng. for Industry 105 (1983) 171-181.
[9] L.H. Chen, S.M. Wu, Further investigation of Multifacet drills (MFD‘s)-mathematical models, methods of grinding, and computer plotting, ASME J. of Eng. for Industry 106 (1984) 313-324.
[10] G.C. Wang, K.H. Fuh, B.H. Yan, A new mathematical model for Multifacet drills derived by using angle-solid model, International Journal of Machine Tools & Manufacture 41 (2001) 103-132.
[11] H.E. Mounayri, A.D. Spence, M.A. Elbestawi, milling process simulation: A generic solid modeller based paradigm, ASME J. of Manufacturing Science and Eng. 120 (1998) 213-221.
[12] A.D. Spence, Y. Altintas, A solid modeller based milling process simulation and planning system, ASME J. of Eng. for Industry 116 (1994) 61-69.
[13] J.W. Ryu, D.G. Gweon, Error analysis of a flexure hinge mechanism induced by machining imperfection, Precision Engineering, vol. 21, pp. 83-89, 1997.
[14] K.S. Chen, D.L. Trumper, S.T. Smith, Design and control for an electromagnetically driven stage, Precision Engineering, vol. 26, pp. 355-369, 2002.
[15] M.L. Culpepper, G. Anderson, Design of a low-cost nano-manipulator which utilizes a monolithic, spatial compliant mechanism, Precision Engineering, vol. 28, pp. 469-482, 2004.
[16] W.O. Schotborgh, F.G.M. Kokkeler, H. Tragter, F.J.A.M. van Houten, Dimensionless design graphs for flexure element and a comparison between three flexure element, Precision Engineering, vol. 29, pp. 41-47, 2005.
[17] W. Xu, T. King, “Flexure Hinges for Piezo-actuator Displacement Amplifiers: Flexibility, Accuracy, and Stress Consideration”, Precision Engineering, Vol. 19, No. 1, pp. 4-10 (1996).
[18] N. Lobontiu, J.S.N. Panine, E.O’Malley, M.Samuelson, Parabolic and hyperbolic flexure hinges: flexibility, motion precision and stress characterization based on compliance closed-form equations, Precision Engineering, vol. 26, pp. 183-192, 2002.
[19] H.Q. Ma, D.J. Hu, K. Zhang, A fast tool feeding mechanism using piezoelecteic actuators in noncircular turning, Int J Adv Manuf Technol, (2005).
[20] A.T. Elfizy, G.M. Bone, M.A. Elbestawi, Design and control of a dual-stage feed drive, International Journal of Machine Tools and Manufacture, vol. 45, pp. 153-165, 2005.
[21] H.T. Huang, C.I. Weng, C.K. Chen, Analysis of clearance and rake angles along cutting edge for Multifacet drills (MFD), ASME J. of Eng. for Industry, 116 (1994) 8-16.
[22] C.J. Oxford, "On the Drilling of Metals-1: Basic Mechanics of theProcess," Trans. ASME, J. of Eng. for Ind., Vol.77, pp 103-114, 1955.
[23] D.F. Galloway, "Some Experiments on the Influence of Various Factors on Drill Performance," Trans. ASME, J. of Eng. for Ind., Vol. 79,pp191-231, 1957.
[24] W.D. Tsai, S.M. Wu, A mathematical model for drill point design and grinding, ASME J. of Eng. for Industry 101 (1979) 333-340.
[25] W.D. Tsai, and S.M. Wu, "Computer Analysis of Drill Point Geometry,"International Journal Machine Tools Design& Research Vol.19, Nov.,pp.95-108, 1979.
[26] T. Radhakrishman, S.M. Wu, C. Lin, ”A Mathematical Model for Split Point Drill Flanks,” Trans.ASME,J. of Engr. for Ind.,Vol.105,1983,pp.137-142.
[27] A.R. Watson, "Geometry of Drill Elements," International Journal
Machine Tools Design& Research Vol.25, pp. 209-227, 1985.
[28] 詹文虎,”分裂型鑽頭的電腦輔助分析及研磨”,高立圖書,1989。
[29] A.S. Salama, A.H. Elsawy, "The Dynamic Geometry of A Twist Drill Point," Journal of Materials Processing Technology Vol.56 pp.45-53, 1996.
[30] V. Ivanov, G. Nankov, Profiling of Rotation Tools for Forming of Helical Surfaces, Int. J. Mach. Tools Manufact., 38 (1998) 1125-1148.
[31] B.J. Agullo, F.S. Cardona, S.C. Vinas, "On The Design of Milling Cutters or Grinding Wheels for Twist Drill Manufacture, A Cad Approach," Proc.25th Int. Machine Tool Des. Res. Cof., pp. 15-320, 1985.
[32] R.H. Thornley, A.B.I. Elhab, J.D. Maiden, "Some Aspects of Twist Drill Design," International Journal Machine Tools Design& Research Vol.27, pp. 383 -397, 1987.
[33] S. Kaldor, A.M. Rafael, D. Messinger, "On the CAD of Profiles for Cutters and Helical Flutes-Geometrical Aspects," Annals of the CIRP Vol.37, pp.53- 56, 1988.
[34] K.F. Ehmann, "Grinding Wheel Profile Definition for the Manufacture of Drill Flutes, " Annals of the CIRP Vol.39, pp.153-156, 1990.
[35] R. Hosoi, M.A. Fugelso, "A Five Axis ComputerControlled Twist Drill Grinder," International Journal Machine Tools Design & Research Vol.24, pp.321-329, 1984.
[36] M.A. Fugelso, "A Standard Conical Point Drill Grinding Machine,"International Journal Machine Tools & Manufacture Vol.41,pp.915-922, 2001.
[37] G. Glaeser, J. Wallner, H. Pottmann, Collision-free 3-axis milling and selection of cutting tools, Comp. Aided Design, 31 (1999) 225-232.
[38] E.S, Lee, Precision Machining of Glass Fibre Reinforced Plastics with respect to Tool Characteristics, Int J Adv Manuf Technol, Vol. 17 (2001), pp. 791-798.
[39] Y.F. Ren, H.T. Yau, Y.S. Lee, Clean-up tool path generation by contraction tool method for machining complex polyhedral models, Computers in Industry, Vol. 54 (2004), pp. 17-33.
[40] Y.S. Lee, T.C. Chang, 2-Phase approach to global tool interference avoidance in 5-axis machining, Comp. Aided Design, 27 (1995) 715-729.
[41] R. Baptista, J.F. Antune Simões, Three and five milling of sculptured surfaces, Journal of Materials Processing Technology 103 (2000) 398-403.
[42] S.C. Park, B.K. Choi, Tool-path planning for direction-parallel area milling, Comp. Aided Design, 32 (2000) 17-25.
[43] S.C. Park, Tool-path generation for Z-constant contour machining, Comp. Aided Design, 35 (2003) 27-36.
[44] J.H. Yoon, H. Pottmann, Y.S. Lee, Locally optimal cutting positions for 5-axis sculptured surface machining, Comp. Aided Design, 35 (2003) 69-81.
[45] S.C. Park, Sculptured surface machining using triangular mesh slicing, Comp. Aided Design, 36 (2004) 279-288.
[46] J.C. Ferguson, Multivariate Curve Interpolation, Journal ACM, 11, 2, (1964) 221-228.
[47] I.D. Faux, M.J. Pratt, Computational geometry for design and manufacture, John Wiley, New York, 1979.
[48] Y. Li, S.Y. Liang, R.C. Petrof, B.B. Seth, Force Modelling for Cylindrical Plunge Cutting, Int J Adv Manuf Technol, Vol. 16 (2000), pp. 863-870.
[49] W.F. Chen, W.Y. Chen, Design and NC machining of a toroid-shaped revolving cutter with a concave-arc generator, Journal of Materials Processing Technology 121 (2002) 217-225.
[50] Q.S. Bao, Y.T. Wang, Y.Y. Tang, S.G. Wang, A study on a virtual manufacturing model of a revolving milling cutter in 2-axis numerical control processing, Journal of Materials Processing Technology 120 (2002) 68-75.
[51] H.C. Zhou, J.H. Chen, D.S. Yang, J. Zhou, B. Shawn, Datacloud fusion in three-dimensional laser comparator, Meas. Sci. Technol. 27 (2000) 93-99.
[52] S.W. Lin, Contour Quality Evaluation of the Toroidal Cutter, Int J Adv Manuf Technol, Vol. 18 (2001), pp. 778-783.
[53] W.A. Kline, R.E. DeVor, R. Lindberg, The Prediction of Cutting Forces in End Milling with Application to Cornering Cuts, Int. J. Mach. Tool Des., Vol. 22, No. 1 (1982), pp. 7-22.
[54] B.M. Imani, M.A. Elbestawi, Geometric Simulation of Ball-End Milling Operations, ASME J. of Manuf. Science and Engineering 123 (2001) 177-184.
[55] H. Terrai, M.H. HAO, K. Kikkawa, Y. Mizugaki, Geometric Analysis of Undeformed Chip Thickness in Ball-Nosed End Milling, Transaction of the JSME(C), Vol. 47, No. 1, (2004), p. 2.
[56] M. Wan, W.H. Zhang, Calculations of Chip Thickness and Cutting Forces in Flexible End Milling, Int J Adv Manuf Technol, Original Article (2005).
[57] 康耀鴻、陳羿銘, 微銑削加工切削厚度與切削力之研究,中國機械工程學會第二十二屆全國學術研討會論文集,D3-010 (2005), pp. 1005-1011.
[58] J.H. Ko, D.W. Cho, Determination of Cutting-Condition- Independent Coefficients and Runout Parameters in Ball-End Milling, Int J Adv Manuf Technol, Original Article (2005).
[59] Piezomechanik GmbH, Operating manual for Piezo actuator Position control, 2004.
指導教授 顏炳華、傅光華
(Biing-Hwa Yan、Kuang-Hua Fuh)
審核日期 2006-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明