博碩士論文 86343010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:107 、訪客IP:18.224.68.28
姓名 王明文(Ming-Wen Wang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 旋轉塗佈製程中不穩定手指狀機制及光阻減量研究
(Fingering Instability and Reduction of Photoresist Usage)
相關論文
★ 化學機械研磨流場模擬實驗研究★ 變轉速之旋轉塗佈實驗研究
★ 微小熱點之主動式冷卻★ 大尺寸晶圓厚膜塗佈
★ 科氏力與預塗薄膜對旋轉塗佈之影響★ 微液滴對微熱點之 冷 卻
★ 大尺寸晶圓之化學機械研磨實驗研究★ 液晶顯示器旋轉塗佈研究
★ 流體黏度對旋塗減量之影響★ 微熱點與微溫度感測器製作
★ 高溫蓄熱器理論模擬★ 熱氣泡式噴墨塗佈
★ 注液模式對旋轉塗佈之影響★ 磁流體旋塗不穩定之研究
★ TFT-LCD狹縫式塗佈研究★ 彩色濾光片噴塗研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 為減少半導體旋塗製程中光阻液的使用量,以及增進對旋塗過程中液膜擴展物理機制的了解,本論文採用流場可視化的實驗方法分析液膜擴展過程,並與數值模擬結果作一比較。本論文首先說明旋塗的早期階段,光阻液膜擴展主要與光阻液的注液有關,而液膜波前會因為離心力的作用而產生手指狀不穩定流,伴隨著手指狀不穩定流長度的增加,其寬度同時會受到科氏力的作用而逐漸變寬。在塗佈的早期階段短時間內,所測得的液膜波前位置,與數值模擬分析所得的結果相較,兩者相當吻合。但是隨著時間的增加,由於手指狀不穩定流的生成,所得到的數據,會逐漸與數值模擬分析所得到的結果產生差異。由實驗結果發現:在固定旋塗轉速,光阻液塗滿晶圓表面的狀況下,提高注液流率確實可以減少光阻液的使用量,而實驗與數值模擬發生差異是導因於手指狀不穩定流的產生,因此手指狀不穩定流在旋塗過程當中扮演著非常重要的角色!因此,本論文另外採用矽油做為實驗流體,就噴塗與擴展液滴兩種注液方式,探討手指狀不穩定流在旋塗過程當中的物理機制。從實驗結果發現:無論是以噴塗或擴展液滴方式注液,在低轉速時之手指狀不穩定流之流場型態應為內部區的流動,其力學關係為粘滯力與毛細力之間的競爭,而在高轉速時手指狀不穩定流之流場型態應為外部區的流動,其力學關係為粘滯力與離心力之間的競爭,故在不同轉速時產生手指狀不穩定流的臨界半徑、手指狀數目等變數,要視其所主宰的流場型態來決定。而液膜波前之流動形狀也會由於分子濕潤與離心力的大小而呈現楔形與圓鼻型之差異。另外就噴塗注液方式而言,其產生手指狀不穩定流的臨界半徑、手指狀數目及最大塗佈半徑等數據均較擴展液滴注液方式來得小且少。隨著注液流率的增加其產生手指狀不穩定流的時間將會延後,所以臨界半徑也會跟著增大,而當注液流率不斷的增加,臨界半徑及時間終將會趨於定值而與注液流率無關。
最後,期望能將本論文所提出的光阻減量方法,以及手指狀不穩定流在旋塗過程當中的物理機制,提供給半導體業界,作為改進實際旋塗加工製程之參考。
摘要(英) To reduce the photoresist usage and understand the film spreading process, this study performs flow visualization experiments and numerical simulations. This thesis is the first work to show that in the early stage of the spin coating process, the spreading of photoresist is mainly governed by the photoresist injection. Then, instability fingers are formed due to the centrifugal force. Accompanied by the growth of fingers in length, the Coriolis force broadens the width of fingers. The numerical results agree with the measured liquid front history at a very short time. Difference between the numerical results and experimental data gradually aroused due to the formation of instability fingers. The critical injection rate for fully coating a wafer increases with decreasing injection volume. Under a fixed wafer rotating speed, increasing the injection rate can significantly reduce the photoresist usage. Since the fingering instability plays a very import role during spin coating, a study of fingering instability for both the injected liquid and a released drop of silicon oil is presented. However, the injected liquid or released drop, the flow field is inner region flow in the low rotational speed and the flow field is outer flow region in the high rotational speed. Due to the effects of molecular wetting and centrifugal force, the shaped of liquid is “wedge” or “nose”. Compared to the results for a released drop, the effect of the liquid injection tends to decrease the critical radius, number of fingers, and maximum fully coated radius.
The results will provide the design and operation of spin coating process.
關鍵字(中) ★ 旋轉塗佈
★ 手指狀不穩定流
★ 光阻液
★ 臨界半徑
★ 噴塗
★ 擴展液滴
關鍵字(英) ★ Spin Coating
★ Fingering Instability
★ Fingering
論文目次 Abstract in Chinese
Abstract in English
Table of Contents
List of Tables
List of Fogires
Nomenclature
Chapter 1 Introduction
1.1 ULSI manufacturing Process
1.2 Spin Coating Process
1.3 Literature Survey
1.4 Introduction to Present Work
Chapter 2 Reduction of Photoresist Usage during Spin Coating
2.1 Experimental Apparatus and Method
2.2 Results and Discussion
2.3 Concluding Remarks
Chapter 3 Fingering Instability during Spin Coating
3.1 Experimental Apparatus and Method
3.2 Dimensional Analysis
3.3 Results and Discussion
3.4 Concluding Remarks
Chapter 4 Effect of Injection Rate on Fingering Instabillities during Spin Coating
4.1 Experimental Apparatus and Method
4.2 Results and Discussion
4.3 Concluding Remarks
Chapter 5 Conclusion and Future Work
5.1 Conclusion
5.2 Future Work
Reference
Appendix A Simplified Governing Equations of Coating Flow
Appendix B Solution of Outer Flow for Spin Coating
Appendix C Solution of Inner Flow for Spin Coating
Appendix D Specifications for Experimental Apparatus
參考文獻 1. S. M. Sze, VLSI Technology, McGraw Hill, New York (1988).
2. S. Wolf, Silicon Processing for the VLSI Era, Vol. I, Lattice Press (1986).
3. A. Mukherjee, Introduction to NMOS & CMOS VLSI System Design, Prentice-Hall, Englewood Cliffs (1986).
4. R. H. Collins and F. T. Deveise, Process for Improving Photoresist Adhesion,U. S. Patent No. 3549368, Dec. (1970).
5. D. J. Elliot, Integrated Circuit Fabrication Technology, 2nd Ed., Mc Graw-Hill (1989).
6. P. Gise and R. Blanchard, Modern Semiconductor Fabrication Technology, Prentice-Hall (1986).
7. C. A. Mack, Manufacture Proceeding for Semiconductor, Microlithography World, Spring, 22 (1994).
8. D. J. Meyerhofer, Characteristics of Resist Film Produced by Spin Coating, J. Appl. Phys., 49, 3993 (1978).
9. C. J. Chu, C. T. Chu, and Q. Wei, Thin Film Produced by Spin Coating, in Proceedings of the 1997 Dielectrics for ULSI Multilevel Interconnection Conference (DUMIC), Santa Clara, CA, 93 (1997).
10. B. Lorefice, D. Chen, B. Mullen, E. Gurer, R. Savage, and R. Reynolds, characteristics of Resist Film Produced by Spin Coating, Semiconductor International, 21, 179 (1998).
11. J. Farrell, The Development of VLSI Fabrication Technology, Semiconductor Int., Jan., 37 (1994).
12. Electronic News, The General Situation for VLSI Technology Development, 8, 5 (1993).
13. Electronic News, The Development of VLSI Fabrication Technology, 18, 1 (1994).
14. A. G. Emslie, F. T. Bonner and L. G. Peck, Flow of a Non-Newtonian Fluids on a Flat Rotating Disk, J. Appl. Phys., 29, 858 (1958).
15. A. Acrivos, M. Shan and E. E. Petersen, On the Flow of a Non-Newtonian Liquid on a Rotating Disk, J. Appl. Phys., 31, 963 (1960).
16. S. A. Jenekhe and S. B. Schuldt, Coating Flow of Non-Newtonian Fluids on a Flat Rotating Disk, Ind. Eng. Chem. Fundam., 23, 432 (1984).
17. P. H. Walker and J. G. Thompson, Flow of a Non-Newtonian Fluids on a Flat Rotating Disk, Proc. Am. Soc. Testing Materials Part II, 22, 464 (1992).
18. L. R. Kleinschmiat, Flow of a Non-Newtonian Fluids on a Rotating Disk, ASTM Bull., 193, 53 (1953).
19. E. B. Bielak and E. W. J. Mardles, Liquid Film Formation on a Flat Rotating Disk, J. Colloid Sci., 9, 233 (1954).
20. J. R. Philip, Film Flow on a Rotating Disk, J. Chem. Phys., 66, 5069 (1977).
21. S. A. Jenekhe, Effect of Solvent Mass Transfer on Flow of Polymer Solutions on a Flat Rotating Disk, Ind. Eng. Chem. Fundam., 23, 425 (1984).
22. S. Shimoji, A New Analysis Model for Spin Coating Process with Solvent Evaporation, Jpn. J. Appl. Phys., 26, 905 (1987).
23. W. W. Flack, D. S. Soong, A. T. Bell, and D. W. Hess, A Mathematical Model for Spin Coating of Polymer Resist, J. Appl. Phys., 56, 1199 (1984).
24. J. Gu, M. D. Bullwinkel, and G. A. Campbell, Measurement and Modeling of Solvent Removal for Spin Coating, Polymer Eng. Sci., 36, 1019 (1998).
25. P. C. Sukanek, Dependence of Film Thickness on Speed in Spin Coating, J. Imaging Technol., 11, 184 (1985).
26. M. D. Bullwinkel, J. Gu, and G. A. Campbell, The Effect of Polymer Molecular Weight and Solvent Type on the Planarization of Spin-Coated Films, J. Electrochem. Soc., 142, 2389 (1995).
27. B. G. Higgins, Film Flow on a Rotating Disk, Phys. Fluids, 29, 3522 (1986).
28. T. J. Rehg and B. G. Higgins, The Effect of Inertia and Interfacial Shear on Film Flow on a Rotating Disk, Phys. Fluids, 31, 1360 (1988).
29. J. Gu, M. D. Bullwinkel, and G. A. Campbell, Spin Coating on Substrate with Topography, J. Electrochem. Soc., 142, 907 (1995).
30. P. C. Sukanek, Dependence of Film Thickness on Speed in Spin Coating, J. Electrochem. Soc., 138, 1712 (1991).
31. P. C. Sukanek, ”Anomalous” Speed Dependence in Polyimide Spin Coating, J. Electrochem. Soc., 144, 3959 (1997).
32. Y. Matsumoto, T. Ohara, I. Teruya, and H. Ohashi, Liquid Film Formation on a Rotating Disk, JSME Int. J. Series II, 32, 52 (1989).
33. D. E. Bornside, C. W. Maccsko, and L. E. Scriven, On the Modeling of Spin Coating, J. Imaging Technol., 13,122 (1987).
34. D. E. Bornside, C. W. Maccsko, and L. E. Scriven, Spin Coating: One-Dimensional Model, J. Appl. Phys., 66, 5185 (1989).
35. D. E. Bornside, C. W. Maccsko, and L. E. Scriven, Spin Coating of PMMA/Chlorobenzene Solution [TN], J. Electrochem. Soc., 138, 317 (1991).
36. J. H. Hwang and F. Ma, On the Flow of a Thin Liquid Film over a Rough Rotating Disk, J. Appl. Phys., 66, 388 (1989).
37. F. Ma and J. H. Hwang, The Effect of Air Shear on the Flow of a Thin Liquid Film over a Rough Rotating Disk, J. Appl. Phys., 68, 1265 (1990).
38. R. K. Yonkoski and D. S. Soane, Model for Spin Coating in Microelectronic Application, J. Appl. Phys., 72, 725 (1992).
39. C. T. Wang and S. C. Yen, Theoretical Analysis of Film Uniformity in Spinning Processes, Chem. Eng. Sci., 50, 989 (1995).
40. T. Yada, T. Maejima, M. Aoki, and M. Umesaki, Thin-Film Formation by Spin coating: Characteristics of a Positive Photoresist, Jpn. J. Appl. Phys., 34, 6279 (1995).
41. T. Yada, T. Maejima, and M. Aoki, Formation of a Positive Photoresist Thin Film by Spin Coating: Influence of Atmospheric Humidity, Jpn. J. Appl. Phys., 36, 7041 (1997).
42. T. Yada, M. Aoki, T. Maejma, and A. Isizv, Formation of a Positive Photoresist Thin Film by Spin Coating: Influence of Atmospheric Temperature, Jpn. J. Appl. Phys., 36, 372 (1997).
43. T. Yada, Formation of a Negative Photoresist Thin Film by Spin Coating, Jpn. J. Appl. Phys., 37, 2752 (1998).
44. L. Mouche, M. Meuris, and M. M. Heyns, Light Point Defect Generation during Photoresist Spin Coating. Characterization and Controlling Parameters, J. Electrochem. Soc., 144, 3608 (1997).
45. F. C. Chou, S.C. Gong, M. W. Wang, and K. T. Li, On the Reduction Liquid Dispensed in Spin Coating, in ASME FED- 239, Proc. 1996 ASME Fluids Engineering Division Summer Meeting, San Diego, CA, 553 (1996).
46. F. Melo, J. F. Joanny, and S. Fauve, Fingering Instability of Spinning Drops, Phys. Rev. Lett., 63, 1958 (1989).
47. N. Fraysse and G. M. Homsy, An Experimental Study of Rivulet Instabilities in Centrifugal Spin Coating of Viscous Non-Newtonian Fluids, Phys. Fluids, 6, 1491 (1994).
48. M. A. Spaid and G. M. Homsy, Stability of Viscoelastics Dynamic Contact Lines: An Experimental Study, Phys. Fluids, 9, 823 (1997).
49. M. A. Spaid and G. M. Homsy, Viscoelastic Free Surface Flows: Spin Coating and Dynanic Contact Lines, J. Non-Newton. Fluid Mech., 55, 249 (1994).
50. M. Sanada, K. Nakano, and M. Matsunaga, An Experimental Study of Viscous Fluids, Jpn. J. Appl. Phys., 37, L 1448 (1998).
51. J. G. Chen, X. J. Meng, B. Li, J. Tang, S. L. Guo, J. H. Chu, M. Wang, H. Wang, and Z. Wang, Ferroelectricity in Sol-Gel driven Ba0.8 Sr0.2 TiO3 Thin Films Using a Highly Diluted Precursor Solution, Appl. Phys. Lett., 75, 2132 (1999).
52. C. H. Chun, Stability of Viscoelastics Dynamic Contact Lines, Europen Space Agency, ESA SP, 229 (1987).
53. S. Middleman, An Introduction to Fluid Dynamics, John Wiely & Sons (1998).
54. S. Middleman, The Effect of Induced Air-Flow on the Spin Coating of Viscous Liquids, J. Appl. Phys., 62, 2530 (1987).
55. M. L. Forcada and C. M. Mate, The Flow of Thin Lubricant Films on Rotating Disk, Elsevier Sequoia, 168, 21 (1993).
56. A. M. Homola, C. M. Mate, and G. B. Street, Overcoats and Lubrication for Thin Film Disks, Matter. Res. Soc. Bull, 15, 45 (1990).
57. R. J. Lingwood, An Experimental Study of Absolute Instability of the Rotating-Disk Boundary-Layer Flow, J. Fluid Mech., 314, 373 (1996).
58. S. Shimoji, A New Analysis Model for Spin Coating Process with Solvent Evaporation, J. Appl. Phys., 66, 1712 (1989).
59. S. Kim, J. S. Kim, and F. Ma, On the Flow of a Thin Liquid Film over a Rotating Disk, J. Appl. Phys., 64, 2593 (1991).
60. M. Yanagisawa, Slip Effect for Thin Liquid Film on a Rotating Disk, J. Appl. Phys., 61, 1034 (1987).
61. W. H. McConnell, One the Rate of Thinning of Thin Liquid Films on a Rotating Disk, J. Appl. Phys., 34, 2232 (1988).
62. C. M. Mate, Application of Disjoining and Capillary Pressure to Liquid Lubricant Films in Magnetic Recording, J. Appl. Phys., 72, 3084 (1992).
63. H. E. Huppert, Flow and Instability of a Viscous Current down a Slope, Nature, 300, 427 (1982).
64. P. D. Ariel, The Flow near a Rotating Disk: An Approximate Solution, ASME J. Appl. Mech., 63, 436 (1996).
65. S. Slavtchev, S. Miladinova, and P. K. Kartera, Unsteady Film Flow of Power-Law liquids on a Rotating Disk, J. Non-Newton. Fluid Mech., 66, 117 (1996).
66. N. Silvi and E. B. Dussan, On the Rewetting of an Inclined Solid Surface by a Liquid, Phys. Fluids, 28,5 (1985).
67. S. M. Troian, E. Herbolzheimer, S. A. Safran, and J. F. Joanny, Fingering Instability of Driven Spreading Films, Europhys. Lett., 10, 25 (1989).
68. J. R. Bruyn, Growth of Fingers at a Driven Three-Phase Contact Line, Phys. Rev. A, 46, 4500 (1992).
69. J. M. Jerrett and J. R. deBruyn, Fingering Instability of a Gravitationally Driven Contact Line, Phys. Fluids A, 4, 234 (1992).
70. N. Silvi and E. B. Dussan V, On the Rewetting of an Inclined Solid Surface by a Liquid, Phys Fluids, 28, 5 (1998).
71. E. B. Dussan V, On the Spreading of Liquids on Solid Surfaces: Static and Dynamic Contact Lines, Rev. Fluid Mech., 11,371 (1979).
72. J. A. Moriarty, L. W. Schwartz, and E. O. Tuck, Unsteady Spreading of Thin Liquid Films with Small Surface Tension, Phys. Fluids A, 3, 733 (1991).
73. D. Y. Schikhmurzaev, Spreading of Drops on Solid Surfaces in a Quasi-Static Regime, Phys. Fluids, 9, 266 (1997).
74. R. Goodwin and G. M. Homsy, A Model for onset of a Sessile Liquid Drop on a Rotating Disk, Phys. Fluids A, 3, 515 (1991).
75. L. W. Schwartz, Viscous Flows down an Inclined Plane: Instability and Finger Formation, Phys. Fluids A, 1, 443 (1989).
76. D. T. Moyle, M. S. Chen, and G. M. Homsy, Nonlinear Rivulet Dynamics during Unstable Wetting Flows, Int. J. Multiphase Flow, 25, 1243 (1999).
77. L. Leger and J. F. Joanny, Liquid Spreading, Rep. Prog. Phys. UK, 431 (1992).
78. B. Frank and S. Garoff, Flow of a Viscous Liquid on an Solid Surface, Colloids and Surfaces A, 116, 31 (1996).
79. A. L. Bertozzi and M. P. Brebber, Unsteady Spreading of Thin Liquid Films with Small Surface Tension, Phys. Fluids, 9, 530 (1997).
80. G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press, London, (1967).
81. F. C. Chou, M. W. Wang, S. C. Gong, and Z. G. Yang, Reduction of Photoresist during Spin Coating, J. Electronic Materials (to be published).
82. Data Sheet of Clariant Inc. Ltd. (Taiwan)
83. W. D. Bascom, R. L. Cottington, and C. R. Singleterry, Dynamic Surface Phenomena in the Spontaneous Spreading of Oils on Solids In Contact Angles, Wettability, and Adhesion, Adv. Chem., 43, 355 (1964).
84. H. Ghirardella, W. Radigan, and H. Frisch, Unsteady Spreading of Thin Liquid Films on a Rotating Disk, J. Coll. Interf. Sci., 51, 522 (1975).
85. L. H. Tanner, The Spreading of Silicon Oil Drops on Horizontal Surfaces, J. Phys. E: Sci. Instrum., 10, 1019 (1977).
86. I. Veretennikov, A. Indeikina, and H.C. Chang, Front Dynamics and Fingering of a Driven Contact Line, J. Fluid Mech., 373, 81 (1998).
指導教授 周復初(Fu-Chu Chou) 審核日期 2006-9-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明