博碩士論文 86343015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:60 、訪客IP:3.142.250.86
姓名 吳明昌(Ming-Chang Wu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 PID與模糊控制在營建工程自動化的探討
(discussion on PID and fuzzy logic control for automation in construction)
相關論文
★ 自動平衡裝置在吊扇上之運用★ 以USB通訊界面實現X-Y Table之位置控制
★ 液體平衡環在立式轉動機械上之運用★ 液流阻尼裝置設計與特性之研究
★ 液晶電視喇叭結構共振異音研究★ 液態自動平衡環之研究
★ 抑制牙叉式機械臂移載時產生振幅之設計★ 立體拼圖式組合音箱共振雜音消除之設計
★ 電梯纜繩振動抑制設計研究★ 以機器學習導入電梯生產結果預測之研究
★ 新環保冷媒R454取代R410A冷媒迴轉式單缸壓縮機效能分析與可靠性驗證★ 高速銑削Al7475-T7351的銑削參數與基因演算法研究
★ 自動化鞋型切削機之設計與實現★ 以FPGA為基礎之精密位置控制IC
★ CNC三維圓弧插補器★ 高速射出成型機自我調整控制器之設計與實現
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 摘要
在此論文中,控制技術將被應用於營建工程以達自動化,本文分別探討運用無線電方向判讀系統自走車於導航潛鑽工法之改善,及移動機械臂焊接系統於遮蔽金屬電弧銲之應用,已達修護焊接程序之自動化。
本文研發一撘載地下鑽頭數位定位接收器之自走車,該自走車具有無線電方向判讀系統,能定位移動或靜止之地下鑽頭且追蹤此鑽頭,不受限於一預定之軌跡或路徑,此自走車系統使用其車上無線電方向判讀系統迅即尋找及追蹤該移動或靜止之鑽頭,比較於傳統之導航潛鑽工法,此系統能減少操作人員、減輕勞力成本、避免意外及增加營建自動化程度。
無線電方向判讀系統之設計及如何定位追蹤目標,於本論文中所考量,為克服無法求得無線電方向判讀系統自走車之精確動態模組,一”模糊控制器”被設計用以控制此系統,且令此系統具有追蹤目標之能力,實驗結果證明此無線電方向判讀系統自走車能追蹤一移動或靜止目標。
傳統地,遮護金屬電弧焊接由人力所操作執行,因此,於危險區域施作焊接並不適合,例如於核能發電廠;當裂縫之位置被事先求得,此機械臂迅即被驅動以固定焊接速度沿焊接路徑前進,因為遮護金屬電弧焊接修護程序,電擊隨焊接過程消耗,故機械臂關節軌跡需要被修正,為保持固定焊接電流及電弧長度,控制系統由量測之焊接電流決定電擊之進給速度,同時修正關節軌跡,實驗結果顯示此系統能有效執行遮護金屬電弧焊且得到好焊接品質。
摘要(英) Abstract
In this thesis, the control technique is applied for the automation in construction. This article discusses the improvement in the horizontal directional drilling method (HDD) and the automation of the shield metal arc welding (SMAW)repair processes, respectively.
The ALV with an RDF system carrying a receiver can locate a moving or static underground drill head and track it. Not limited to a pre-determined track or path, the ALV system utilizes its on board RDF system instantaneously to seek and to track a moving or static drill head. Compared to conventional systems, the system reduces the number of operators, minimizes labor costs, prevents accidents, and enhances the degree of automation.
The design of the RDF system and how to locate a target are considered in this article. To overcome the difficulty in obtaining the precise dynamic model of the ALV with the RDF system, a “fuzzy logic controller” is designed to control such a system and make the system capable of tracking a target. Experimental results verify that such an RDF ALV system can track a moving or static target.
Conventionally, shield metal arc welding (SMAW) has been performed by manual operator, and hence it is not easy to apply in hazardous areas such as in nuclear power plants. The position of cracks can be determined beforehand; the robot is then driven at a constant welding speed along the welding path. Since the electrode is consumed during the SMAW process, the robotic joint trajectories need to be modified to keep the end of the electrode on tracking on the desired welding path. The control system determines the feeding velocity of the electrode from the measured welding current and joint positions and modifies the joint trajectories correspondingly. The experimental results show that our system can effectively perform SMAW operations resulting in good quality welding.
關鍵字(中) ★ 遮蔽金屬電弧銲
★ 移動機械臂焊接系統
★ 無線電方向判讀系統
★ 導航潛鑽工法
關鍵字(英) ★ shield metal arc welding
★ Mobile Robotic Welding System
★ Radio Direction Finding System
★ Horizontal Directional Drilling Method
論文目次 中文目錄
第一章 緒論............................................一
第二章 應用具無線電方向判讀系統之自走車於導航潛鑽工法之改
良...................................................五六
第三章 移動機械壁焊接系統於遮蔽金屬電弧銲之應用………五八
第四章 結論..........................................六十
Content
Abstract .............................................63
List of Figures ......................................65
List of Tables .......................................68
1. Introduction
1.1 Motivation....................................... 69
1.2 Organization .....................................69
2. Improvement of the Horizontal Directional Drilling Method by Using an
Autonomous Land Vehicle with a Radio Direction Finding System
2.1 Introduction .....................................71
2.2 Experimental Set-up ...................................................74
2.3 The Controller Design for the ALV System ...............................................77
2.4 Experimental Results and Discussion ...........................................82
2.5 Conclusion ...........................................86
3. A Mobile Robotic Welding System For SMAW Repair Processes
3.1Introduction ......................................103
3.2Trajectory Generation............................................105
3.2.1 Kinematics of Robot ................................................105
3.2.2 Inverse Robot Kinematics and Trajectory Generation.................107
3.3 Welding Current and Joint Position Control System..........................110
3.4 Experimental Set-up and Results……………………………………112
3.5 Conclusion & Discussion............................................115
4. Conclusion ...........................................135
62
References ...........................................136
Author Information ..........................................140
參考文獻 References
[1] J.J. Struzziery, A.A. Spruch, C.A. Blondin, Trenchless pipe repair for urban renewal project, Journal of New England Water Environment Association, 32(2) (Nov 1998), 118-125.
[2] T. Hirata, T. Ogawara, T. Nakajima, Y. Matsuo, K. Koike and T. Ishikawa, Horizontal directional drilling method for pipeline crossing, NKK Technical Review n 76 July 1997 NKK Corp Chiyoda-ku Japan pp. 17-23.
[3] T.Carl, Horizontal directional drilling: state of the art, Water Well Journal v 51 n 3 Mar 1997 Ground Water Publ Co Columbus OH USA pp. 52-57.
[4] I. A. Salehi, Horizontal drilling for onshore gas faces many challenges, Oil and Gas Journal v 90 n 40 Oct 5 1992 pp. 61-63.
[5] T. Carl, Horizontal directional drilling: environmental applications, Water Well Journal v 50 n 5 May 1996 Ground Water Publ Co Columbus OH USA pp. 57-61.
[6] R. C. Leaf, F. J. Pittard, Review of horizontal methods and drilling technology, Soc of Petroleum Engineers of AIME Richardson TX USA pp. 575-584.
[7] P. M. Blakita, Planning and performing horizontal directional drilling for soil grouting, Geotechnical Special Publication GeoDenver 2000 Conference ‘ Advances in Grouting and Ground Modification’ Aug 5 – Aug 8 n 104 2000 Denver, CO, USA.
[8] T.Y. Hsieh, P.C. Tung, Y. Chu and H. Chou, The evaluation and promotion of the underground utility lines using automotive trenchless technology in the urban area - the application of the Horizontal and Directional Drilling Method, the Construction and Planning Administration Ministry of Interior, Taiwan., Technical Report 002214870190, May 1998.
[9] Y. Okawa and H.Goto, Application of color tapes to the guidance problem of robotic vehicles, Proceedings of the 5th International Symposium on Industrial Robots, Tokyo, 1985, v1, pp. 279-286.
[10] A. Gordon and R. King, Intelligent waveform analysis for ultrasonic ranging in a cluttered environment, IEEE Industry Application Society Annual Meeting, 1991, pp. 1175-1181.
[11] M. Guo, K. He, X. Tao and X. Ao, Method of local planning and navigation control for the autonomous land vehicle, Journal of Tsinghua University, Beijing, China, Oct 1995, v35, n5, pp. 7-13.
[12] K.I. Kim, S.Y. Oh, S.W. Kim, H. Jeong, J.H. Han, C.N. Lee, B.S. Kim and C.S. Kim, Autonomous land vehicle PRVⅡ: progress and performance enhancement, Proceedings of the Intelligent Vehicles Symposium, Detroit, MI, Sep 1995, pp. 264-269.
[13] Q. Zhang and W. Gu, Combining camera and laser radar for ALV navigation, Lecture Notes in Computer Science, 1998, v1351, pⅠ-144.
[14] D.G. Morgenthaler, S. Hennessy and D. DeMenthon, Range-video fusion and comparison of inverse perspective algorithms in static images, IEEE Transactions on Systems, Man and Cybernetics, Nov-Dec 1990, v20 n6, pp.1301-1312.
[15] G.Y. Chen and W.H. Tsai, Incremental-learning-by-navigation approach to vision-based autonomous land vehicle guidance in indoor environments using vertical line information and multiweighted generalized Hough Transform technique, IEEE Transactions on Systems Man and Cybernetics Part B: Cybernetics, October 1998, Vol. 28, No. 5, pp. 740-748.
[16] G. J. Klir and B. Yuan, “Fuzzy Sets and Fuzzy Logic”, Prentice Hall PTR, New Jersey, 1995.
[17] S. M. Reid, P. G. Anderson, HDD may not be the answer for all sensitive water crossings, Pipe Line and Gas Industry v 81 n 7 Jul 1998.
[18] C. R. Paul, “Introduction to Electromagnetic Compatibility”, John Wiley & Sons, Inc., New York, 1992.
[19] H. W. Ott, “Noise Reduction Techniques in Electronic Systems”, Bell Telephone Laboratories, Inc., New York, 1976.
[20] L. Tetley, D. Calcutt, Electronic Aids to Navigation, Edward Arnold, New York, 1988.
[21]Howard, B.C., “Modern Welding Technology”, Prentice-Hall, Inc., Englewood Cliffs, 1979.
[22]Smith, D., “Welding Skills and Technology”, McGraw-Hill Book Co., 1989.
[23]Yuji, S., Yoshihiro, K. and Masao, U., “High Efficiency Processes in Automatic Welding”, Welding Research Abroad, vol. 45, No. 4, pp. 32-37,1999 Welding Research Council, New York, USA.
[24]Tao, J. and Levick, P., “Assessment of feedback variables for through the arc seam tracking in robotic gas metal arc welding”, Proceedings on Robotics and Automation, 1999 IEEE International Conference, pp 3050 -3052 , vol. 4 , 1999.
[25]Ksiazkiewicz, R., Gustafson, N., “Robotic GTAW may prove key to higher gas turbine engine production”, Welding Journal (Miami, Fla), pp. 33-37, vol. 75, No. 12, Dec. 1996, American Welding Soc Miami, FL USA.
[26]Tanioka, S.I., Murayama, T., Tejima, A., Oka, Y., Iinuma, K., Sohno, K., Iijima, T., “Development of robotic welding system for jet engine”, IHI Engineering Review, pp. 84-88, vol. 23, no. 3, Jul 1990.
[27]Harlow, M., Marzano, F., Palmgren, D., “Robotic welding of sheet metal parts using the GTAW process”, American Helicopter Soc., pp. 1299-1306, Alexandria, VA USA.
[28]Suga, Y., Mukai, M., Usui, S., Ogawa K., “Estimation and adaptive control of penetration in GTAW by monitoring dimension of molten pool”, Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering – OAME Materials Engineering Proceedings of the 1997 16th International Conference on Offshore Mechanics and Arctic Engineering. Part3 (of 6) Apr 13-17 1997 v3 1997 Yokohama Japan.
[29]Kim, J.S., Song, Y.K., Cho, H.S. and Koh, K. I., “A Robust Visual Tracking System for Robotic Arc Welding Systems”, Mechatronics, Vol. 6, No. 2, pp141-163, 1996.
[30]Ohshima, K., Yamamoto, M., Tanii, T., Yamane, S., “Digital control of torch position and weld pool in MIG welding using image processing device”, IEEE Transactions on Industry Applications, pp. 607-612, vol. 28, no. 3, May-Jun 1992.
[31] Schilling, R. J., “Fundamentals of Robotics”, Prentice-Hall, Inc., 1997.
[32] Craig, J., “Introduction to robotics: mechanics and control”, Addision–Wesley Publishing Company, Inc., 1989.
[33]謝定亞,董必正,朱怡,周漢慶,”都市地區地下管線無開挖施工自動化技術之推廣與評估-潛鑽工法之應用”, 內政部營建署自動化專案計畫,民國八十七年五月。
指導教授 董必正(Pi-Cheng Tung) 審核日期 2004-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明