博碩士論文 87323008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:18.117.142.46
姓名 許瑞杰(Ran-Jian Hsu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 微極彈性內凹結構波桑比之有限元素法分析
相關論文
★ 凹形球面微電極與異形微孔的成形技術研究★ 二氧化鈦薄膜之製備與分析
★ 固態氧化物燃料電池連接板電漿鍍膜特性研究★ 碳奈米管微電極陣列之製造與性質檢測
★ 超塑性5083鋁合金快速成形空孔狀態之分析★ 不銹鋼微細槽放電加工及電化學拋光精修槽壁效果之研究
★ 壓力容器與引流管接合處之軸對稱有限元素分析★ 負波桑比結構之桁架有限元素法分析
★ 具負波桑比性質之細胞型材料之有限元素法分析★ 具負波桑比傘狀結構之分析與應用
★ Ti-6Al-4V之超塑性成形製程模擬與分析★ 利用微極彈性理論分析蜂巢式結構之波桑比效應
★ 結合微細放電與高頻抖動研磨之微孔加工研究★ 負波桑比機構之設計與分析
★ 微雙材料熱變形樑之應用分析★ 以微波電漿化學氣相沉積法成長奈米碳管之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文以Eringen微極彈性理論(MET)為基礎,利用平面線性三角形元素,依照所推導之位移、微旋轉、應力及力偶應力之關係,以有限元素法撰寫Fortran 電腦語言程式,來分析微極彈性內凹型蜂巢結構結構之波桑比,並探討結構之幾何變化及微極彈性常數之變化對結構之波桑比之影響。
由數值分析結果得知,微極彈性內凹型蜂巢結構其內凹角度(幾何限制範圍內)在30度時具有較低,更甚有負值的波桑比值出現。
而在微極彈性常數之限制條件下,當改變微極彈性常數(α=0、β=0、γ、κ、λ、μ*)時,我們可以找到使結構之波桑比出現負值的各個常數範圍,並可依照所需條件去選擇材料。
摘要(英) Based on the Eringen’’s micropolar elasticity theory (MET), a two-dimensional triangular finite element formulation is desired using constant strain triangle (CST) element and a corresponding computer program is developed to investigate the relation between the value of Poisson’s ratio for the re-entrant honeycomb structure by the variation of micropolar elastic constants and structural geometry. According to our numerical results, the honeycomb structure can exhibit negative Poisson’s ratio with appropriate re-entrant angle. Under the restrictions on micropolar elastic constants, we find that the value of Poisson’s ratio varied when changing the micropolar elastic constants. The range of micropolar elastic constants when the Poisson’s ratio become negative is obtained.
關鍵字(中) ★ 微極彈性
★ 波桑比
★ 有限元素法
關鍵字(英) ★ micropolar elasticity
★ Poisson's ratio
★ finite element method
論文目次 總目錄
摘要----------------------------------------------------------Ⅰ
總目錄--------------------------------------------------------Ⅱ
圖目錄------------------------------------------------------- IV
表目錄--------------------------------------------------- --- VI
第一章 緒論----------------------------------------------------1
第二章 基本理論------------------------------------------------4
2.1微極彈性理論概要--------------------------------------------4
2.2平衡方程式--------------------------------------------------4
2.3線性組成方程式----------------------------------------------5
2.4應變與位移的關係--------------------------------------------6
2.5邊界條件----------------------------------------------------6
2.6協調方程式---------------------------------------------6
2.7微極彈性常數的限制-------------------------------------7
2.8算式推導-----------------------------------------------7
第三章 有限元素法推導-----------------------------------------12
3.1概論-------------------------------------------------------12
3.2三角形元素-------------------------------------------------12
3.3等參元素---------------------------------------------------15
3.4連鎖法則---------------------------------------------------16
3.5應變計算---------------------------------------------------17
3.6應力計算---------------------------------------------------19
3.7能量法-----------------------------------------------------20
第四章 數值分析結果與討論-------------------------------------24
4.1幾何形狀之影響---------------------------------------------25
4.1.1角度--------------------------------------------------25
4.1.2肋寬----------------------------------------------------30
4.2微極彈性常數之影響-----------------------------------------36
第五章 結論---------------------------------------------------58
參考文獻------------------------------------------------------59
圖目錄
圖1 內凹型蜂巢結構--------------------------------------------3
圖2.1立方元素受應力及力偶應力----------------------------------7
圖2.2平面應力條件下之應力與力偶應力----------------------------9
圖3.1線性三角形元素-------------------------------------------13
圖3.2線性三角形元素之形狀函數---------------------------------13
圖3.3面積座標形式之三角形元素---------------------------------14
圖3.4程式流程圖-----------------------------------------------23
圖4.1內凹型蜂巢結構之分析元素圖-------------------------------24
圖4.2各材料在結構不同內凹角度之波桑比值-----------------------26
圖4.3 N=0.00 結構節點9、10、11、12在不同凹角下之位移----------27
圖4.4 N=0.25 結構節點9、10、11、12在不同凹角下之位移----------28
圖4.5 N=0.50 結構節點9、10、11、12在不同凹角下之位移----------28
圖4.6 N=0.75 結構節點9、10、11、12在不同凹角下之位移----------29
圖4.7 N=0.90 結構節點9、10、11、12在不同凹角下之位移----------29
圖4.8各個力偶因子條件中不同的肋寬下結構之波桑比值-------------31
圖4.9不同的N各結構元素之應力(Txx)-----------------------------32
圖4.10不同的N各結構元素之應力(Tyy)----------------------------33
圖4.11不同的N各結構元素之應力(Txy)----------------------------33
圖4.12不同的N各結構元素之應力(Tyx)----------------------------34
圖4.13不同的N各結構元素之應力(Mxz)----------------------------34
圖4.14不同的N各結構元素之應力(Myz)----------------------------35
圖4.15變更常數λ與波桑比νs之關係-----------------------------37
圖4.16變更常數μ*與波桑比νs之關係----------------------------38
圖4.17變更常數γ與波桑比νs之關係-----------------------------39
圖4.18變更常數κ與波桑比νs之關係-----------------------------40
圖4.19變更常數λ與波桑比νs之關係-----------------------------41
圖4.20變更常數μ*與波桑比νs之關係----------------------------42
圖4.21變更常數γ與波桑比νs之關係-----------------------------43
圖4.22變更常數κ與波桑比νs之關係-----------------------------44
圖4.23變更常數λ與波桑比νs之關係-----------------------------45
圖4.24變更常數μ*與波桑比νs之關係----------------------------46
圖4.25變更常數γ與波桑比νs之關係-----------------------------47
圖4.26變更常數κ與波桑比νs之關係-----------------------------48
圖4.27變更常數λ與波桑比νs之關係-----------------------------49
圖4.28變更常數μ*與波桑比νs之關係----------------------------50
圖4.29變更常數γ與波桑比νs之關係-----------------------------51
圖4.30變更常數κ與波桑比νs之關係-----------------------------52
圖4.31變更常數λ與波桑比νs之關係-----------------------------53
圖4.32變更常數μ*與波桑比νs之關係----------------------------54
表目錄
表1 微極彈性材料常數------------------------------------------24
表2微極彈性材料等效常數---------------------------------------25
表3變更微極彈性材料參考特性-----------------------------------57
參考文獻 [1]B. M. Lempriere,“Poisson’s Ratio in Orthotropic Materials”
AIAA Journal, Vol.6, No.11, pp.2226-2227,1968.
[2]Robert F. Almgren, “An isotropic three-dimensional
structure with Poisson’s ratio =-1”, Journal of Elasticity
15, pp.427-430, 1985.
[3]K. E. Evans, “Tensile network microstructures exhibiting
negative Poisson’ ratios”, J. Phys. D:Appl.Phys.22,pp.1870-
1876, 1989.
[4]Ulrik Darling Larsen, Ole Sigmund, and Siebe Bouwstra,
“Design and Fabrication of Compliant Micromechains and
Structures with Negative Poisson’s Ratio” , Journal of
microelectromechainical systems, Vol.6, No.2, pp.99-106,
June 1997.
[5]J. B. Choi ,and R. S. Lakes, J. Mater. Sci. Vol.27, pp.4678,
1992.
[6]W. Voigt,“Theoretische studin uber die
elasticitusverhultnisse der kystalle”, Aha-ndlungen der
konigllschaft der wissenshaften zu gottingen. Vol.24,
Gottingen, 1887.
[7] E. and F. Cosserat, “Theories des corps deformables”,
Paris, A. Hermann and Sons, 1909.
[8] A. C. Eringen ,“Linear Theory of Micropolar Elasticity”,
J. Math. Mech., Vol.15, No.6, pp.909, 1966.
[9] S. Nakamura, R. Bendic ,and R. Lakes,“Finite Element
Method for Orthotropic Micropolar Elasticity”, Int.J.Engng
Sci. Vol.22, No.3, pp.319-330, 1984.
[10]A. C. Eringen,“Theory of Micropolar Elasticity”, Fractur,
H. Liebotiz,ed., Vol.2, New York, pp.129, 1968.
[11]S. C. Cowin, ZAMP, Vol.21, pp.494, 1970.
[12]R. D. Gauthier, and W. E. Jahsman, J. Appl. Mech. Trans.
ASME, Vol.42, pp.369, 1975.
[13]A. C. Eringen, Fracture (Edited by M. Liebowitz),
Academic Press, New York, Vol.2, pp.621-729, 1968.
[14]王勗成,邵敏, “有限元素基本原理與數值方法”, 東華書局, 1990.
[15]T. R. Chandrupatla, and A. D. Belegundu, “Introduction to
Finite Element in Engineering”, 2nd edit., 1997.
[16]J. Lee, J. B. Choi, and K. Choi, J. Mater. Sci. Vol.31,
pp.4105,1996.
[17]R. D. Gauthier,“Analytical and Experimental Investigations
in Linear Isotropic Micropolar Elasticity”, Doctoral
Dissertation, Univ. of Colorado (1974).
指導教授 黃豐元(Fuang-Yuan Huang) 審核日期 2000-6-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明