博碩士論文 87323109 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:140 、訪客IP:18.223.172.252
姓名 林銘隆(Min-Long Lin)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 T-S模糊模型之建構、強健穩定分析與H2/H∞控制
(Model construction, robust stabilization and H2/H∞ control for T-S fuzzy models)
相關論文
★ 強健性扇形區域穩定範圍之比較★ 模糊系統混模強健控制
★ 廣義H2模糊控制-連續系統 線性分式轉換法★ 廣義模糊控制-離散系統 線性分式轉換法
★ H∞模糊控制-連續系統 線性分式轉換法★ H∞模糊控制—離散系統 線性分式轉換法
★ 強健模糊動態輸出回饋控制-Circle 與 Popov 定理★ 強健模糊觀測狀態回饋控制-Circle與Popov定理
★ H_infinity 取樣模糊系統的觀測型控制★ H∞取樣模糊系統控制與觀測定理
★ H-ihfinity取樣模糊系統動態輸出回饋控制★ H∞模糊系統控制-多凸面法
★ H∞模糊系統控制-寬鬆變數法★ 時間延遲 T-S 模糊系統之強健 H2/H(Infinity) 控制與估測
★ 寬鬆耗散性模糊控制-波雅定理★ 耗散性估測器-波雅定理
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文主題有三:
1. 經由事先給定非線性系統的動態方程式,將此系統精確的轉換成 Takagi-Sugeno (T-S) 模糊模型。
2. 設計狀態回授控制器來穩定 T-S 模糊模型並推導出較不保守的穩定條件,使得該穩定條件可求解的程度比現有文獻中的穩定條件高,因而透過該穩定條件求解控制器增益值時可較求解其他穩定條件容易獲得有解。
3. 設計靜態輸出回授控制器來穩定 T-S 模糊模型並滿足 H2 或 H∞ 性能要求。主要在解決該控制器所導致的雙線性矩陣不等式 (BMI) 如何求解的問題。
T-S 模糊模型的優點在於它可充分運用以 Lyapunov 定理為基礎的系統分析與設計技巧,透過將非線性系統轉換成 T-S 模糊模型之後,可提供一套系統化的方法研究非線性系統的穩定分析與性能控制問題。當使用這套方法時,由於控制器是根據 T-S 模糊模型所設計而非直接針對非線性系統做設計,因此若非線性系統與 T-S 模糊模型之間存在誤差,則此誤差項將影響穩定與性能分析的結果。為確保系統與模型之間的誤差為零,本篇論文提供一個方法將誤差以不確定項 (norm bounded uncertainty) 來表示,而後,非線性系統即可精確的表達成具有不確定項的 T-S 模糊模型。
針對具有不確定項的 T-S 模糊模型,本篇論文根據平行分散式補償器 (PDC) 的概念設計控制器,分別討論採用狀態回授控制器的穩定分析問題及採用靜態輸出回授控制器的性能控制問題。
在狀態回授控制問題中,本篇採用的控制器並非一般傳統 PDC 形式的狀態回授控制器,而是一個更廣泛的設計架構,當中包含較多的自由參數,可提高穩定問題的可求解性。不同於以往採用單一正定矩陣的方式 (common $P$ approach) 驗證閉回路系統的穩定性,本篇採用一包含有模糊模型的激發強度及多個正定矩陣所構成的函數來做為Lyapunov函數的侯選。基於控制器的特殊設計及根據Lyapunov定理,本篇獲得一新的 T-S 模糊模型的狀態回授穩定條件,該條件是一個非二次 (non-quadratic) 穩定條件。經由證明發現本篇所提穩定條件比現有文獻當中以單一正定矩陣所推出的穩定條件較不保守,也就是說,
如果單一正定矩陣穩定條件成立時,本篇所提出的條件也一定會成立;但是當單一正定矩陣穩定條件不成立時,本篇所提的條件未必不會成立。因此,本篇所提的非二次穩定條件優於單一正定矩陣穩定條件,即採用此一新的條件
來判斷 T-S 模糊模型穩定性的可求解性比較高。
控制系統中,當系統狀態無法完全獲知時,則必須採用估測器獲得所需的資訊或直接以輸出回授做控制,本篇另一個方向所討論的即是一般較少研究的靜態輸出回授控制問題。在靜態輸出回授控制方面,最大的問題在於所推導出的穩定或性能條件並非線性矩陣不等式 (LMI) 而是以雙線性矩陣不等式 (BMI) 的形式呈現,而 BMI 無法如同 LMI 一般可輕易經由現有工具程式求解。因此,本篇將此部份的重點放在如何求解 BMI 的問題上。考慮靜態輸出回授的 H2 及 H∞ 性能控制問題,本篇發展三種方法來解決該性能條件當中的 BMI 求解問題,包括:
1. 系統狀態轉換,將原本會造成 BMI 的系統轉換成可獲得 LMI 形式性能條件的等效系統。
2. 引進一多餘變數(矩陣),透過必要條件求解該變數,而後,其他未知矩陣可形成 LMI。
3. 利用時變的 Lyapunov 函數獲得時變性能條件,透過給定終值(矩陣),該時變條件可形成 LMI。
透過這些方法可將輸出回授性能控制問題中的 BMI 條件轉換為 LMI 形式求解或者經由反覆求解某些 LMI 來達到求解 BMI 的目的。另外,本篇附錄當中說明了動態輸出回授控制與靜態輸出回授形式的關連,所以,以上的方法亦可應用於求解動態輸出回授控制器的增益值。
以上的穩定與性能問題乃是針對具有不確定項的 T-S 模糊模型所討論,不論是連續或離散時間系統皆有考慮到。由於具有不確定項的 T-S 模糊模型可精確的表達非線性系統,因此,所設計的控制器將可穩定該模型所表示的非線性系統並達到所要求的性能限制。
摘要(英) In this dissertation, construction of a Takagi-Sugeno (T-S) fuzzy model to exactly represent a given nonlinear system is investigated. Then, controller syntheses for stabilization of the resulting T-S fuzzy model or satisfaction of required H2 and H∞ performances are studied.
Since T-S fuzzy model renders itself naturally to a Lyapunov-based system analysis and design techniques, it provides an alternative way to study stabilization and performance problems for a nonlinear system which is formulated as a T-S fuzzy model. However, it should be noted that when there exist modeling errors between a model and a nonlinear system, they could influence the stability or performance of the nonlinear system when the underlying controller designed for the model is to be used in conjunction with the nonlinear system. To eliminate the modeling errors, we first show that a class of nonlinear systems can be exactly represented by a T-S fuzzy model with norm bounded uncertainties accountable for the modeling errors. Then, a state feedback controller or a static output feedback controller designed in the form of a parallel distributed compensator (PDC) is considered to stabilize the uncertain T-S fuzzy model.
For the state feedback case, a controller which is more general than the conventional PDC controller is designed to stabilize an uncertain T-S fuzzy model. To analyze the stability of the corresponding closed-loop system, the well known Lyapunov theory is used where a non-quadratic function via fuzzy blending of several quadratic functions is chosen as a Lyapunov candidate. Based on the designed state feedback controller and a given fuzzy Lyapunov candidate, a non-quadratic stabilization condition in terms of linear matrix inequalities (LMIs) is obtained. The new condition is shown to be less conservative than the existing results derived from the relaxed common $P$ approaches.
In the case of static output feedback control for the uncertain T-S fuzzy model, an H2 or H∞ control problem is considered. Based on Hamilton-Jacobi conditions as well as a common $P$ approach, a set of bilinear matrix inequalities (BMIs) is derived as a performance condition to assuring the required performance constraint. Note that the BMI condition is unlike the LMI conditions that can be directly and easily solved by convex techniques. To overcome the difficulty of solving the BMI condition, three approaches ranging from (1) coordinate transformation, (2) slack variable and (3) time-varying $P$ matrix are proposed. Furthermore, connection to static output feedback and dynamic output feedback is addressed. In Appendix B, a dynamic output feedback control scheme is developed and shown to have a similar structure to a static output feedback, indicating the proposed methods are applicable in such case as well.
In summary, the state or static/dynamic-output feedback controllers synthesized for the uncertain T-S fuzzy models can be equally applied to stabilize the nonlinear systems or to guarantee a desired performance, since a T-S fuzzy model with norm-bounded uncertainties is shown to exactly represent the nonlinear systems.
關鍵字(中) ★ H2/H∞ 控制
★ 雙線性矩陣不等式
★ 線性矩陣不等式
★ T-S模糊模型
★ 平行分散式補償器
★ 強健控制
★ 寬鬆穩定條件
關鍵字(英) ★ Bilinear matrix inequality (BMI)
★ Takagi-Sugeno (T-S) fuzzy model
★ Parallel distributed compensator (PDC)
★ Robust control
★ Relaxed stabilization condition
★ H2/H∞ control
★ Linear matrix inequality (LMI)
論文目次 {1}Introduction
{1.1}Overview
{1.2}Motivations and Main Contributions
{1.3}Organization of This Dissertation
{2}Preliminaries: Model Construction, Problem Formulations and Tools
{2.1}Construction of Uncertain T-S Fuzzy Models
{2.2}Control Objectives
{2.3}Useful Lemmas
{3}State Feedback PDC: Relaxed Stabilization Conditions
{3.1}Stabilizability of Continuous-Time T-S Models
{3.2}Stabilizability of Discrete-Time T-S Models
{3.3}Extensions to Robust Stabilizability
{3.4}Examples
{3.5}Summary
{4}Static Output Feedback PDC, Part I: Solving BMI for Continuous T-S
{4.1}H_2 Control for Noise-Free Uncertain T-S Models
{4.1.1}Method 1: System Coordinate Transformation
{4.1.2}Method 2: Iterative LMI Algorithm
{4.1.3}Method 3: Time-Varying $P$ Matrix
{4.2}H∞ Control for Uncertain T-S Models
{4.2.1}Method 1: System Coordinate Transformation
{4.2.2}Method 2: Iterative LMI Algorithm
{4.2.3}Method 3: Time-Varying $P$ Matrix
{4.3}Examples
{4.4}Summary
{5}Static Output Feedback PDC, Part II: Solving BMI for Discrete T-S
{5.1}H_2 Control for Noise-Free Uncertain T-S Models
{5.1.1}Method 1: System Coordinate Transformation
{5.1.2}Method 2: Iterative LMI Algorithm
{5.1.3}Method 3: Time-Varying $P$ Matrix
{5.2}H∞ Control for Uncertain T-S Models
{5.2.1}Method 1: System Coordinate Transformation
{5.2.2}Method 2: Iterative LMI Algorithm
{5.2.3}Method 3: Time-Varying $P$ Matrix
{5.3}An Example
{5.4}Summary
{6}Conclusion
References
Appendix {A} Proof of Lemmas
Appendix {B} Dynamic Output Feedback PDC
參考文獻 [1] T. Takagi and M. Sugeno, ``Fuzzy identification of systems and its applications to modeling and control', IEEE Trans. Syst., Man, Cybern., vol. 15, no. 1, pp. 116--132, Jan. 1985.
[2] H. Ying, ``Sufficient conditions on general fuzzy systems as function approximators', Automatica, vol. 30, no. 3, pp. 521--525, 1994.
[3] H. Ying, ``Sufficient conditions on uniform approximation of multivariate functions by Takagi-Sugeno fuzzy systems with linear rule consequent', IEEE Trans. Syst., Man, Cybern. A: Systems and Humans, vol. 28, no. 4, pp. 515--520, Apr. 1998.
[4] H.W. Wang, J. Li, D. Niemann, and K. Tanaka, ``T-S fuzzy model with linear rule consequence and PDC controller: a universal framework for nonlinear control systems', Proc. 9th IEEE Conf. Fuzzy Syst., San Antonio, TX., 2000, vol. 2, pp. 549--554.
[5] K. Tanaka and H.O. Wang, Fuzzy Control Systems Design: A Linear Matrix Inequality Approach, John Wiley & Sons, Inc., New York, NY, 2001.
[6] T. Taniguchi, K. Tanaka, H. Ohatake, and H.O. Wang, ``Model construction, rule reduction and robust compensation for generalized form of Takagi-Sugeno fuzzy systems', IEEE Trans. Fuzzy Syst., vol. 9, no. 4, pp. 525--538, Aug. 2001.
[7] M. Sugeno and G.T. Kang, ``Structure identification of fuzzy model', Fuzzy Sets and Systems, vol. 28, pp. 15--33, 1988.
[8] K. Tanaka, T. Taniguchi, and H.O. Wang, ``Generalized Takagi-Sugeno fuzzy systems: rule reduction and robust control', Proc. of 7th IEEE Conf. on Fuzzy Systems, 2000.
[9] H.O. Wang, K. Tanaka, and M.F. Griffin, ``An approach to fuzzy control of nonlinear systems: stability and design issues', IEEE Trans. Fuzzy Syst., vol. 4, no. 1, pp. 14--23, Feb. 1996.
[10] K. Tanaka, T. Ikeda, and H.O. Wang, ``Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs', IEEE Trans. Fuzzy Syst., vol. 6, no. 2, pp. 250--265, May 1998.
[11] E. Kim and H. Lee, New approaches to relaxed quadratic stability condition of fuzzy control systems', IEEE Trans. Fuzzy Syst., vol. 8, no. 5, pp. 523--534, Oct. 2000.
[12] Y. Blanco, W. Perruquetti, and P. Borne, ``Relaxed stability conditions for Takagi-Sugeno's fuzzy models', Proc. 9th IEEE Conf. Fuzzy Syst., San Antonio, TX., 2000, vol. 2, pp. 539--543.
[13] H.D. Tuan, P. Apkarian, T. Narikiyo, and Y. Yamamoto, ``Parameterized linear matrix inequality techniques in fuzzy control system design', IEEE Trans. Fuzzy Syst., vol. 9, no. 2, pp. 324--332, Apr. 2001.
[14] M.C.M. Teixeira, E. Assuncao, and R.G. Avellar, ``On relaxed LMI-based design for fuzzy controllers', Proc. 10th IEEE Conf. Fuzzy Syst., Melbourne, Australia, 2001, vol. 2, pp. 704 --707.
[15] G. Feng and J. Ma, ``Quadratic stabilization of uncertain discrete-time fuzzy dynamic system', IEEE Trans. Circuits and Syst. I: Fundamental theory and Applications, vol. 48, no. 11, pp. 1137--1344, 2001.
[16] S.G. Cao, N.W. Rees, and G. Feng, ``$H^infty$ control of nonlinear continuous-time systems based on dynamical fuzzy models', Int'l. Journal on Systems Science, vol. 27, no. 9, pp. 821--830, 1996.
[17] M. Johansson, A. Rantzer, and K.-E. Arzen, ``Piecewise quadratic stability of fuzzy systems', IEEE Trans. Fuzzy Syst., vol. 7, no. 6, pp. 713--722, Dec. 1999.
[18] K. Kiriakidis, ``Robust stabilization of the Takagi-Sugeno fuzzy model via bilinear matrix inequalities', IEEE Trans. Fuzzy Syst., vol. 9, no. 2, pp. 269--277, Apr. 2001.
[19] M. Chadli, D. Maquin, and J. Ragot, ``Relaxed stability conditions for Takagi-Sugeno fuzzy systems', Proc. 2000 IEEE International Conference on Systems, Man, and Cybernetics, 2000, vol. 5, pp. 3514--3519.
[20] K.~Tanaka, T.~Hori, and H.W. Wang, ``A fuzzy Lyapunov approach to fuzzy control system design', American Control Conference, Arlington, VA, 2001, vol.~6, pp. 4790 --4795.
[21] K.~Tanaka, T.~Hori, and H.W. Wang, ``A dual design problem via multiple Lyapunov functions ', Proc. 10th IEEE Conf. Fuzzy Syst., Melbourne, Australia, 2001, vol.~1, pp. 388 --391.
[22] K.~Tanaka, T.~Hori, and H.W. Wang, ``New parallel distributed compensation using time derivative of membership functions: a fuzzy Lyapunov approach', Proc. 40th IEEE Conf. Decision and Control, Orlando, FL, 2001, vol.~4, pp. 3942 --3947.
[23] Y.~Morere, T.M. Guerra, L.~Vermeiren, and A.~Kamoun, ``Non quadratic stability and stabilization of discrete fuzzy models', IEEE-ACIDCA Conference, 1999, reprint from authors.
[24] T.M. Guerra and W.~Perruquetti, ``Non quadratic stabilization of discrete Takagi Sugeno fuzzy models', FUZZ-IEEE2001 Conference, Melbourne, AU, 2001, vol.~1, pp. 1271--1274.
[25] T.M. Guerra and L.~Vermeiren, ``Conditions for non quadratic stabilization of discrete fuzzy models', 2001 IFAC Conference, 2001.
[26] M.A.L. Thathachar and P.~Viswanath, ``On the stability of fuzzy systems', IEEE Trans. Fuzzy Syst., vol. 5, no. 1, pp. 145--151, Feb. 1997.
[27] M.~Johansson and A.~Rantzer, ``Computation of piecewise quadratic Lyapunov functions for hybrid systems', IEEE Trans. Automat. Contr., vol. 43, no. 4, pp. 555--559, Apr. 1998.
[28] K.S. Narendra and J.~Balakrishnan, ``A common Lyapunov function for stability LTI systems with commuting A-matrices', IEEE Trans. Automat. Contr., vol. 39, no. 12, pp. 2469--2471, 1994.
[29] J.~Joh, Y.H. Chen, and R.~Langari, ``On the stability issues of linear Takagi-Sugeno fuzzy Model', IEEE Trans. Fuzzy Syst., vol. 6, no. 3, pp. 402--410, Aug. 1998.
[30] Y.Y. Cao and P.M. Frank, ``Robust $H_infty$ disturbance attenuation for a class of uncertain discrete-time fuzzy systems', IEEE Trans. Fuzzy Syst., vol. 8, no. 4, pp. 406--415, Aug. 2000.
[31] H.J. Lee, J.B. Park, and G.~Chen, ``Robust fuzzy control of nonlinear systems with parametric uncertainties', IEEE Trans. Fuzzy Syst., vol. 9, no. 2, pp. 369--379, Apr. 2001.
[32] K.R. Lee, E.T. Jeung, and H.B. Park, ``Robust fuzzy $H_infty$ control of uncertain nonlinear systems via state feedback: an LMI approach', Fuzzy Sets and Systems, vol. 120, pp. 123--134, 2001.
[33] S.G. Cao, N.W. Rees, and G.~Feng, ``$H_infty$ control of uncertain fuzzy continuous-time systems', Fuzzy Sets and Systems, vol. 115, pp. 171--190, 2000.
[34] K.~Tanaka and M.~Sano, ``A robust stabilization problem of fuzzy control systems and its application to backing up control of a truck-trailer', IEEE Trans. Fuzzy Syst., vol. 2, no. 2, pp. 119--133, May 1994.
[35] K.~Zhou and P.P. Khargonekar, ``Stability robustness bounds for linear state-space model with structured uncertainty', IEEE Trans. Automat. Contr., vol. 32, no. 7, pp. 621--623, July 1987.
[36] I.R. Petersen, ``A stabilization algorithm for a class of uncertain linear systems', Syst. & Contr. Lett., vol. 8, pp. 351--357, 1987.
[37] P.P. Khargonekar, I.R. Petersen, and K.~Zhou, ``Robust stabilization of uncertain linear systems: quadratic stabilizability and $H_infty$ control theory', IEEE Trans. Automat. Contr., vol. 35, no. 3, pp. 356--361, Mar. 1990.
[38] L.~Xie, M.~Fu, and C.E. de Souza, ``$H_infty$ control and quadratic stabilization of systems with parameter uncertainty via output feedback', IEEE Trans. Automat. Contr., vol. 37, no. 8, pp. 1253--1256, Aug. 1992.
[39] L.~Xie and C.E. de Souza, ``Robust $H_infty$ control for linear systems with norm-bounded time-varying uncertainty', IEEE Trans. Automat. Contr., vol. 37, no. 8, pp. 1188--1191, Aug. 1992.
[40] L.Y. Wang and W.~Zhan, ``Robust disturbance attenuation with stability for linear systems with norm-bounded nonlinear uncertainties', IEEE Trans. Automat. Contr., vol. 41, no. 6, pp. 886--888, June 1996.
[41] S.G. Cao, N.W. Rees, and G.~Feng, ``Quadratic stability analysis and design of continuous fuzzy control systems', Int'l. Journal on Systems Science, vol. 27, no. 2, pp. 193--203, 1996.
[42] G.~Feng, S.G. Cao, N.W. Rees, C.M. Cheng, and J.~Ma, ``$H_infty$ control of continuous time fuzzy dynamic systems', Proc. of the 6th IEEE Int'l Conf. Fuzzy Systems, Barcelona, SP, 1997, vol.~2, pp. 1141--1146.
[43] B.S. Chen, C.S. Tseng, and H.J. Uang, ``Mixed $H_2/H_infty$ fuzzy output feedback control design for nonlinear dynamic systems: an LMI approach', IEEE Trans. Fuzzy Syst., vol. 8, no. 3, pp. 249--265, June 2000.
[44] K.P. Lee, J.H. Kim, E.J. Jeung, and H.~Park, ``Output feedback robust $H_infty$ of uncertain fuzzy dynamic systems with time-varying delay', IEEE Trans. Fuzzy Syst., vol. 8, no. 6, pp. 657--664, Dec. 2000.
[45] B.S. Chen, C.S. Tseng, and H.J. Uang, ``Robustness design of nonlinear dynamic systems via fuzzy control', IEEE Trans. Fuzzy Syst., vol. 7, no. 5, pp. 571--585, Oct. 1999.
[46] Z.~Han, G.~Feng, and N.~Zhang, ``Dynamic output feedback $H_infty$ controller design of fuzzy dynamic systems using LMI techniques', Proc. of Second International Conference on Knowledge-Based Intelligent Electronic Systems, Adelaide, AU, 1998, vol.~2, pp. 343--352.
[47] N.~Zhang and G.~Feng, ``Mixed $H_2/H_infty$ control design for fuzzy dynamic systems via LMI', 6th Int'l Conf. Neural Info. Processing, Perth, AU, 1999, vol.~1, pp. 298--303.
[48] P.~Gahinet and A.~Nemirovskii, ``General-purpose LMI solver with benchmarks', Proc. of the 32nd Conf. Decision Contr., San Antonio, TX., Dec. 1993, pp. 3162--3165.
[49] P.~Gahinet, A.~Nemirovskii, A.J. Laub, and M.~Chilali, ``The LMI control toolbox', Proc. of the 33rd Conf. Decision Contr., Lake Buena Vista. FL., Dec. 1994, pp. 2038--2041.
[50] F.H.F. Leung, H.K. Lam, and P.K.S. Tam, ``Design of fuzzy controllers for uncertain nonlinear systems using stability and robustness analyses', Syst. & Contr. Lett., vol. 35, pp. 237--243, 1998.
[51] F.~Zheng, Q.G. Wang, T.H. Lee, and X.~Huang, ``Robust PI controller design for nonlinear systems via fuzzy modeling approach', IEEE Trans. Syst., Man, Cybern. A: Systems and Humans, vol. 31, pp. 666--675, 2001.
[52] K.~Tanaka, T.~Ikeda, and H.O. Wang, ``Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: quadratic stabilizability, $H^infty$ control theory, and linear matrix inequalities', IEEE Trans. Fuzzy Syst., vol. 4, no. 1, pp. 1--13, Feb. 1996.
[53] X.-J. Ma, Z.-Q. Sun, and Y.-Y. He, ``Analysis and design of fuzzy controller and fuzzy observer', IEEE Trans. Fuzzy Syst., vol. 6, no. 1, pp. 41--51, Feb. 1998.
[54] V.L. Syrmos, C.~Abdallah, P.~Dorato, and K.~Grigoriadis, ``Static output feedback: A Survey', Automatica, vol. 33, no. 2, pp. 125--137, 1997.
[55] Y.~Wang, L.~Xie, and C.E. de Souza, ``Robust control for a class of uncertain nonlinear systems', Syst. & Contr. Lett., vol. 19, pp. 139--149, 1992.
[56] K.~Zeng, N.Y. Zhang, and W.L. Xu, ``A comparative study on sufficient conditions for Takagi-Sugeno fuzzy systems as universal approximators', IEEE Trans. Fuzzy Syst., vol. 8, no. 6, pp. 773--780, Dec. 2000.
[57] M.C.M. Teixeira and S.H. Zak, ``Stabilizing controller design for uncertain nonlinear systems using fuzzy models', IEEE Trans. Fuzzy Syst., vol. 7, no. 2, pp. 133--142, Apr. 1999.
[58] J.C. Lo and M.L. Lin, ``Robust $H_infty$ nonlinear modeling and control via uncertain fuzzy systems', Fuzzy Set and Systems, 2003, article in press.
[59] J.C. Lo and M.L. Lin, ``Robust $H_infty$ nonlinear control via fuzzy static output feedback', IEEE Trans. Circuits Syst. I: Fundamental Theory and Appl., 2003, accepted.
[60] M.L. Lin and J.C. Lo, ``Fuzzy controller synthesis for nonlinear systems via Takagi-Sugeno Model', Proc. 2002 Conf. Auto. Contr., Tainan, TW, Mar. 2002, vol.~1, pp. 76--81.
[61] H.J. Kang, C.~Kwon, Y.H. Yee, and M.~Park, ``$L_2$ robust stability analysis for the fuzzy feedback linearization regulator', Proc. of the 6th IEEE Int'l Conf. on Fuzzy Systems, 1997, vol.~1, pp. 277--280.
[62] H.J. Kang, C.~Kwon, H.~Lee, and M.~Park, ``Robust stability analysis and design method for the fuzzy feedback linearization regulator', IEEE Trans. Fuzzy Syst., vol. 6, no. 4, pp. 464--472, Nov. 1998.
[63] K.~Kiriakidis, A.~Grivas, and A.~Tzes, ``Quadratic stability analysis of the Takagi-Sugeno fuzzy model', Fuzzy Sets and Systems, vol. 98, pp. 1--14, 1998.
[64] S.G. Cao, N.W. Rees, and G.~Feng, ``Analysis and design of fuzzy control systems using dynamic fuzzy-state space models', IEEE Trans. Fuzzy Syst., vol. 7, no. 2, pp. 192--200, 1999.
[65] A.~Jadbabaie, M.~Jamshidi, and A.~Titli, ``Guaranteed-cost design of continuous-time Takagi-Sugeno fuzzy controller via linear matrix inequalities', Proc. of IEEE World Congress on Computational Intell., Anchorage, AK., May 1998, vol.~1, pp. 268--273.
[66] K.~Tanaka, T.~Hori, and H.O. Wang, ``New robust and optimal designs for Takagi-Sugeno fuzzy control systems', Proc. of 1999 IEEE Int'l Conf. on Control Appl., Kohala Coast, Hawaii, 1999, pp. 415--420.
[67] S.~Boyd, L.~E. Ghaoui, E.~Feron, and V.~Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, PA., 1994.
[68] M.L. Lin and J.C. Lo, ``Non-quadratic stabilizability of T-S fuzzy models', Proc. 2003 Conf. Auto. Contr., Jung-Li, TW, Mar. 2003, vol.~1.
[69] M.L. Lin and J.C. Lo, ``Relaxed stabilzation conditions via slack variables: discrete T-S', IEEE Trans. Syst., Man, Cybern. B: Cybernetics, 2002, revised.
[70] M.L. Lin and J.C. Lo, ``$H_2/H_infty$ nonlinear control via static output feedback: a fuzzy perspective', Fuzzy Set and Systems, 2003, submitted.
[71] M.L. Lin and J.C. Lo, ``Fuzzy $H_2$ suboptimal control via static output feedback', Proc. 9th Nat'l Conf. Fuzzy Theory and Appl., Jungli, TW, Nov. 2001, vol.~1, pp. 690--695.
[72] M.~Mattei, ``A note on the solution of a class of BMIs for $H_infty$ problems', Proc. 39rd Conf. on Decision and Control, Sydney, Australia, 2000, pp. 2746--2747.
[73] J.C. Lo and Y.C. Lin, ``Robust $H_infty$ fuzzy control via dynamic output feedback for discrete-time systems', The 2002 IEEE World Congress on Computational Intelligence, Honolulu, HI, May 2002, vol.~3, pp. 633--638.
[74] Y.Y. Cao and Y.X. Sun, ``Static output feedback simultaneous stabilization: ILMI approach', Int. J. Contr., vol. 70, no. 5, pp. 803--814, 1998.
[75] Y.Y. Cao, J.~Lam, and Y.X. Sun, ``Static output feedback stabilization: an ILMI approach', Automatica, vol. 34, no. 12, pp. 1641--1645, 1998.
[76] Y.Y. Cao, Y.X. Sun, and J.~Lam, ``Simultaneous stabilization via static output feedback and state feedback', IEEE Trans. Automat. Contr., vol. 44, no. 6, pp. 1277--1282, 1999.
[77] M.L. Lin and J.C. Lo, ``Static nonlinear output feedback $H_2$ control for T-S fuzzy models', Proc. the 12th IEEE Conf. Fuzzy Systems., St. Louis, MO, May 2003, vol.~1, accepted.
[78] M.L. Lin and J.C. Lo, ``Static output feedback control for T-S fuzzy models with nonlinear output', Proc. 10th Nat'l Conf. Fuzzy Theory and Appl., Shinchu, TW, Nov. 2002, pp. 13--16.
[79] M.L. Lin and J.C. Lo, ``$H_infty$ nonlinear control via fuzzy static output feedback', Proc. 18th Chinese Soci. Mech. Eng. Conf., Taipei, TW, Dec. 2001, vol.~2, pp. 195--200.
[80] M.L. Lin and J.C. Lo, ``An iterative solution to dynamic output stabilization and comments on "dynamic output feedback controller design for fuzzy systems"', IEEE Trans. Syst., Man, Cybern. B: Cybernetics, 2002, article in press.
[81] D.C.W. Ramos and P.L.D. Peres, ``A less conservative LMI condition for the robust stability of discrete-time uncertain systems', Syst. & Contr. Lett., , no. 43, pp. 371--378, 2001.
指導教授 羅吉昌(Ji-Chang Lo) 審核日期 2003-6-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明