博碩士論文 87343013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:3.16.207.48
姓名 李建毅(Chien-Yi Lee)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 自動化焊接系統之研究
(A Study of an Automatic Welding System)
相關論文
★ 自動平衡裝置在吊扇上之運用★ 以USB通訊界面實現X-Y Table之位置控制
★ 液體平衡環在立式轉動機械上之運用★ 液流阻尼裝置設計與特性之研究
★ 液晶電視喇叭結構共振異音研究★ 液態自動平衡環之研究
★ 抑制牙叉式機械臂移載時產生振幅之設計★ 立體拼圖式組合音箱共振雜音消除之設計
★ 電梯纜繩振動抑制設計研究★ 以機器學習導入電梯生產結果預測之研究
★ 新環保冷媒R454取代R410A冷媒迴轉式單缸壓縮機效能分析與可靠性驗證★ 高速銑削Al7475-T7351的銑削參數與基因演算法研究
★ 自動化鞋型切削機之設計與實現★ 以FPGA為基礎之精密位置控制IC
★ CNC三維圓弧插補器★ PID與模糊控制在營建工程自動化的探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 遮蔽金屬電弧焊接是一種最通用的熔化與接合的電弧焊接方法,但是相關的文獻研究卻是比遮蔽金屬電弧焊接與惰性鎢極電弧焊接還少。本論文所描述的自動遮蔽金屬電弧焊接控制系統可用來取代需要良好訓練技工的手動焊接操作,雖然機械人焊接在許多焊接工業應用上已經取代了手工焊接,但是在發展自動化焊接過程中,由於其複雜的過程而無法完全地開發。
首先,展開一個二階數學模型的焊接控制系統,它主要由一交流伺服馬達驅動之焊條進給控制機構所組成,此自動化焊接控制系統可以視為一個焊條進給速度控制系統。為了設計非線性控制器來針對這個自動遮蔽金屬電弧焊接控制系統和使用數值模擬來分析這工業上焊接的過程,我們推導二階動態焊接控制系統並且鑑別此系統的參數。在操作期間,針對我們所提出兩種強健控制器來控制以交流伺服馬達驅動的焊條進給控制機構,可以補賞熔掉的焊條部份,也可以穩定不必要的電弧長度變動。
適應性滑動模態控制器由等效控制部份與迫近控制部分所組成,從李雅普若夫函數(Lyapunov function)所推導的適應性法則可用來得到模糊控制器的參數值和近似順滑模態控制(sliding mode control)的等效控制部份,因此系統狀態可以強迫到零點狀態。並藉由三條規則的模糊控制器來確保迫近控制能滿足系統狀態可以維持在順滑面上的迫近條件。因此,可以保證適應性滑動模態控制器的穩定度和用來調節電焊條進給機構以控制SMAW焊接系統的電弧電流大小。以適應性滑動模態為基礎的模擬與實驗結果均顯示可以表現得很有效率。
在論文的最後,推導一個如有死區,焊接控制系統飽和摩差力的表徵的非線性數學模型並鑑別出其系統參數。設計一個新的可變結構模型控制法則來調節焊接調節電焊條進給機構以控制電弧電流大小,並且可以確保自動化焊接系統的全區接近條件的順滑模態。在此順滑模態中,在自動焊接機器與模型上的電弧電流誤差最後會趨近於零。此外,此焊接系統雖在有摩差力的狀況下也不會受不確定性與干擾的影響。在模擬與實驗的結果可證實基於所提出的模型追隨可變結構控制器可以成功地維持所需要焊接電流的大小和維持電弧長度的穩定度,因而確保得到出色的焊接性能。
摘要(英) Shield metal arc welding (SMAW) is the most common type of an arc welding process that melts and joins metals, but its research is less than inert gas metal arc welding (GMAW) or inert gas tungsten arc welding (GTAW). This thesis describes an automatic SMAW control system which has replaced manual operations required a well-trained technician. Robotic welders have replaced manual human operations in many welding applications, but the automated process control systems have not been fully developed due to the complexity of the process.
A numerical procedure is first developed to derive a second-order mathematical model of the welding control system, which consists primarily of an electrode feed-rate mechanism driven by an AC servomotor. The automatic welding control system can be considered an electrode feed-rate velocity control system. To be able to develop nonlinear controllers for the SMAW system and also for enabling numerical simulation to analyze an industrial welding process, a second-order mathematical model of the welding control system has been derived and the parameters of the system have been identified. The electrode feed-rate mechanism for our proposed controllers is driven an AC servomotor that can both compensate for the molted part of the consumed electrode and for the undesirable fluctuations of the arc length during automated welding operation.
An adaptive fuzzy sliding mode controller (AFSMC) consists of an equivalent control part and a hitting control part. An adaptive law derived from a Lyapunov function is used to obtain the FLC’s parameters, and is applied to approximate the equivalent control part of the sliding mode control (SMC), so that the system states can be forced to zero. By using three rules FLC, the hitting control part that satisfies the hitting conditions of the SMC can force the system’s states to reach and remain on the sliding surface. Therefore, the stability of the AFSMC can be guaranteed and can be used to modulate the rate of the electrode feeding mechanism that regulates the arc current of the SMAW. The simulation and the experimental results both show that this automatic welding control system, based on the AFSMC, can perform effectively.
Finally, in this thesis, a nominal nonlinear mathematical model containing uncertainties such as dead-zone, welding control system saturation, and the identified system parameters is derived. A novel variable structure model reference control scheme is designed to modulate the rate of the electrode feed mechanism thereby regulating the arc current, the developed controller assures the global reaching condition of the sliding mode of the controlled welding system. In the sliding mode, the electric current error between the plant and the model approaches zero asymptotically. Moreover, the welding system remains insensitive to uncertainties and disturbance as the systems with friction. The simulation and experimental results confirm that the automatic welding control system, based on the proposed model-following variable structure controller, successfully maintains the magnitude of the arc current at the desired value and preserves the stability of the arc length, thereby ensuring an excellent welding performance.
關鍵字(中) ★ 可變結構模型追蹤控制
★ 適應模糊順滑控制
★ 遮蔽金屬電弧焊接
★ 自動化焊接
關鍵字(英) ★ adaptive fuzzy sliding mode control
★ SMAW
★ automatic welding
★ variable structure model reference scheme
論文目次 Abstract ......................................................................................................................III
Nomenclature .......................................................................................................... IX
List of Figures........................................................................................................ XII
List of Tables..........................................................................................................XV
Chapter 1. Introduction
1.1 Motivation......................................................................................................1
1.2 Literature Survey ...........................................................................................6
1.3 Dissertation Organization ............................................................................14
Chapter 2. Arc Welding Processes
2.1 Introduction..................................................................................................15
2.2 Arc Welding .................................................................................................17
2.2.1 Electrode Arc ......................................................................................19
2.2.2 Shielded Metal Arc Electrodes ...........................................................22
2.3 Shielded Metal Arc Welding ........................................................................24
2.3.1 SMAW Process ...................................................................................24
2.3.2 Advantages and Disadvantages of the SMAW Process ......................27
2.4 Gas Tungsten Arc Welding ....................................................................29
2.4.1 GTAW Process ....................................................................................29
2.4.2 Advantages and Disadvantages of the GTAW Process .......................31
2.5 Gas Metal Arc Welding................................................................................33
2.5.1 GMAW Process...................................................................................33
2.5.2 Advantages and Disadvantages of the GMAW Process......................35
2.6 Plasma Arc Welding.....................................................................................36
2.6.1 PAW Process .......................................................................................36
2.6.2 Advantages and Disadvantages of the PAW Process ..........................37
2.7 Flux Cored Arc Welding ..............................................................................39
2.7.1 FCAW Process ....................................................................................39
2.7.2 Advantages and Disadvantages of the FCAW Process .......................42
2.8 Submerged Arc Welding ..............................................................................43
2.8.1 SAW Process.......................................................................................43
2.8.2 Advantages and Disadvantages of the SAW Process..........................45
Chapter 3. Dynamic Model for the Automatic SMAW System
3.1 System Overview.........................................................................................55
3.2 Automatic Shielded Metal Arc Welding System Modeling .........................56
3.2.1 Electrode Feed-rate Mechanism .........................................................56
3.2.2 System Identifications.........................................................................60
3.3 Experimental Device....................................................................................63
3.4 Current Sensor .............................................................................................63
3.5 Decoder ........................................................................................................64
3.6 Peripheral Interface......................................................................................64
3.6.1 A/D converter......................................................................................64
3.6.2 D/A converter......................................................................................65
3.7 Control Algorithm Implementation..............................................................65
Chapter 4. Design of an Automatic Welding System Using an
Adaptive Fuzzy Sliding Mode Control
4.1 Introduction..................................................................................................75
4.2 Dynamic System Modeling..........................................................................78
4.2.1 Arc Welding System Modeling ...........................................................78
4.2.2 System Parameters Identifications......................................................80
4.3 The Theories and Design of the Adaptive Fuzzy Sliding Mode Controller..83
4.3.1 Sliding Mode Controller .....................................................................83
4.3.2 Adaptive Fuzzy Sliding Mode Controller ...........................................84
4.3.2.1 Fuzzy Logic Control in Arc Welding Process ........................84
4.3.2.2 Structure of the Adaptive Fuzzy Sliding Mode Controller.....85
4.4 Computer Simulation and Experimental Results.........................................89
4.5 Conclusion ...................................................................................................92
Chapter 5. Development of an Automatic Welding System Using a
Variable Structure Model Reference Scheme
5.1 Introduction..................................................................................................99
5.2 Dynamic System Modeling........................................................................102
5.3 System Description and Problem Formulation ..........................................106
5.4 Switching Surface Design..........................................................................109
5.5 Variable Structure Controller Design.........................................................111
5.6 Experimental Equipments and Results ......................................................114
5.7 Conclusion .................................................................................................116
Chapter 6. Conclusion and Future Works
6.1 Conclusions................................................................................................122
6.2 Future Works..............................................................................................124
References.............................................................................................................126
Vita ..........................................................................................................................140
Publication List...................................................................................................141
參考文獻 [1] P. T. Houldcroft, Welding Process Technology, New York: Cambridge University Press, 1977.
[2] Larry Jeffus, Welding: Principles and Applications, Delmar Publishers, 1999.
[3] Dave Smith, Welding Skills and Technology, McGraw-Hill Book Co., 1989.
[4] B.C. Howard, Modern Welding Technology, Prentice-Hall, Inc. Englewood Cliffs, 1979.
[5] L. X. Wang, Adaptive Fuzzy Systems and Control: Design and Stability Analysis, Prentice-Hall international Editions, 1994.
[6] T. Takagi and M. Sugeno, “Fuzzy Identification of Systems and Its Applications to Modeling and Control,” IEEE Trans. Systems, Man, Cybernet. Smc-15, Vol. 1, pp. 116-132, 1998.
[7] M. A. Austin, “Real-time Multi-processing Fuzzy Logic Adaptive Control Gas Tungsten Arc Welding System,” Proceedings of the WPDRTS IEEE, pp. 139-143, 1996.
[8] L. X. Wang, A Course in Fuzzy Systems and Control, Prentice-Hall, Inc. Englewood Cliffs, 1997.
[9] D. H. Kim, H. S. Kim, J. M. Kim, C. Y. Won and S. C. Kim “Induction Motor Servo System Using Variable Structure Control with Fuzzy Sliding Surface,” Industrial Electronics, Control, and Instrumentation, 1996., Proceedings of the 1996 IEEE IECON 22nd International Conference, Vol. 2, pp.521-528, 1996.
[10] F. J. Lin, K. K. Shyu and Y. S. Lin, ” Variable Structure Adaptive Control for PM Synchronous Servo Motor Drive,” IEE Proc. Electr. Power Appl., Vol. 146, No. 2, pp. 173-185, March 1999.
[11] G. R. Yu, M. H. Tseng and Y. K. Lin, “Optimal Positioning Control of a DC Servo Motor Using Sliding Mode,” Control Applications, 2004. Proceedings of the 2004 IEEE International Conference, Vol. 1, pp. 272-277, 2004.
[12] C. Canudas de Wit, P. Noe1, A. Aubin, B. Brogliato and P. Drevet, “Adaptive Friction Compensation in Robot Manipulators: Low-Velocities,” IEEE International Conference in Robotics and Automation, Scottsdale, Arizona, U.S. A, pp. 1352-1357, 1989.
[13] C. C. de. Wit, H. Olsson, K. J. and P. Lischinsky, “A New Model for Control of Systems with Friction,” IEEE Transactions on Automatic Control, Vol. 40, No. 3, pp. 419-425, March 1995.
[14] C. Canudas de Wit and P. Lischinsky “Adaptive Compensation with Partially Known Dynamic Friction Model,” International Journal of Adaptive Control and Signal Processing, Vol. 11, pp. 65-80, 1997.
[15] Y. M. Zhang, E. Liguo and B.L. Walcott, “Interval Model Based Control of Gas Metal Arc Welding,” IEEE International Conference, American Control Conference, Vol. 3, pp. 1752-1756, 1998.
[16] P. Verdelho, P. M. Silva, E. Margato, J. Esteves, “An Electronic Welder Control Circuit,” IEEE International Conference, Industrial Electronics Society, Vol. 2, pp. 612-617, 1998.
[17] H. Yamamoto, “The Development of Welding Control System for Spatter Reduction,” Welding International, Vol. 4, No. 5, pp. 398-403, 1990.
[18] M. Abdelrahman, “Feedback Linearization Control of Current and Arc Length in GMAW Systems,” IEEE International Conference, Vol. 3, pp. 1757-1761, 1998.
[19] Y. M. Chae and G. H. Choe, “A New Instantaneous Output Current Control Method for Inverter Arc Welding Machine,” IEEE, PRCS’99 Proceeding, Vol. 1, pp. 521-528, 1999.
[20] B. K Bose, “Sliding Mode Control of Induction Motor,” IEEE/IAS Conference Record, pp. 479-486, 1985.
[21] V. I. Utkin, “Sliding Mode Control Design Principles and Applications to Electric Devices,” IEEE Trans. Ind. Electronic, Vol. 40, No. 1, pp. 23-36, 1993.
[22] L. I. Slotine, Applied Nonlinear Control, Prentice-Hall, Inc. Englewood Cliffs, 1991.
[23] S. L. Chiu and K. K. Shyu, “Novel Sliding Mode Controller for Synchronous Motor Drive,” IEEE Trans. on Aerospace and Electronic System, Vol. 34, No. 2, April, pp. 532-542, 1998.
[24] K. P. Park and J. J. Lee, “Adaptive Sliding Mode Controller with Monotonically Nonincreasing Gain for Nonlinear Uncertain Systems,” IEEE International Workshop on VSS '96, Proceedings, pp. 139-142, 1996.
[25] R. J. Wai, C. H. Lin and F. J. Lin, "Adaptive Sliding-mode Control for Motor-toggle Servomechanism," IEEE Conf. on Power Electronics Specialists, Vol. 3, pp. 1093-1099, June, 2000.
[26] P. Liu and L. Hao, "Vector Control-based Speed Sensorless Control of Induction Motors Using Sliding-Mode Controller," The Sixth World Congress on Intelligent Control and Automation, Vol. 1, pp. 1942-1946, 2006.
[27] A. A. Hassan, Y. S. Mohamed and E. G. Shehata, "Cascade Sliding Mode Torque Control of a Permanent Magnet Synchronous Motor," IEEE International Conf. on Industrial Technology, pp. 465-470, December 2006.
[28] V. I. Utkin and A. Sabanovic, "Sliding Modes Applications in Power Electronics and Motion Control Systems," Proceeding of the IEEE International Symposium on Industrial Electronics, Vol. 1, pp. 12-16, July 1996.
[29] V. I. Utkin, "Sliding Mode Control in Dynamic Systems," Proceedings of the 32nd IEEE Conf. on Decision and Control, Vol. 3, pp 2446-2451, 1993.
[30] G. Bartolini, A. Ferrara and V. I. Utkin, "Design of Discrete-time Adaptive Sliding Mode Control," Proceedings of the 31st IEEE Conf. on Decision and Control, Vol. 2, pp. 2387-2391, December 1992.
[31] L.A. Zadeh, "Fuzzy Logic = Computing with Words," IEEE Transactions on Fuzzy Systems, Vol. 4, pp. 103-111, May 1996.
[32] L.A. Zadeh, "Fuzzy Logic and The Calculus of Fuzzy If-then Rules," Twenty-Second International Symposium on Multiple-Valued Logic, pp. 480, May 1992.
[33] H. J. Zimmermann, Fuzzy Set Theory and Its Applications, Edition, Kluwer Academic Publishers, 1996.
[34] E. H. Mamdani, “Application of Fuzzy Algorithms for Control of Simple Dynamic Plant,” Proc. IEE, Vol. 121, No. 12, pp. 1585-1588, 1974.
[35] E.H. Mamdani, "Twenty Years of Fuzzy Control: Experiences Gained and Lessons Learnt", Second IEEE International Conf. on Fuzzy Systems, Vol. 1, pp. 339-344, 1993.
[36] E.H. Mamdani, H.J. Efstathiou and K. Sugiyama, "Developments in Fuzzy Logic Control," The 23rd IEEE Conf. on Decision and Control, Vol. 23, pp. 888-893, 1984.
[37] M. C. Shih and C. S. Lu, “Fuzzy Sliding Mode Position Control of a Ball Screw Driven by Pneumatic Servomotor,” Mechatronics, Vol. 5, No. 4, pp. 421-431, 1985.
[38] A. Rubaai, D. Ricketts and M.D. Kankam, "Experimental Evaluation of a Fuzzy Logic-based Controller for High Performance Brushless DC Motor Drives," Industry Applications Conference Record of the 2000 IEEE, Vol. 2, pp. 1299-1305, 2000.
[39] A. Rubaai, D. Ricketts and M.D. Kankam,"Laboratory Implementation of a Microprocessor-based Fuzzy Logic Tracking Controller for Motion Controls and Drives," IEEE Trans. on Industry Applications, Vol. 38, pp. 448-456, 2002.
[40] R. Palm, “Sliding Mode Fuzzy Control,” IEEE International Conf. on Fuzzy Systems FUZZ-IEEE ' 92, San Diego Proceeding, pp. 519-526, 1992.
[41] R. Palm and D. Driankov, "Fuzzy inputs," Proceedings of the Third IEEE Conference on Fuzzy Systems, pp. 756-765, June 1994.
[42] R.G. Berstecher, R. Palm and H.D. Unbehauen, "An Adaptive Fuzzy Sliding-mode Controller," IEEE Transactions on Industrial Electronics, Vol. 48, pp. 18-31, 2001.
[43] L. X. Wang, “Stable Adaptive Fuzzy Control of Nonlinear Systems,” IEEE Trans. Fuzzy Syst., Vol. 1, pp. 146-155, May 1993.
[44] G. C. Hwang and S. C. Lin, “A Stability Approach to Fuzzy Control Design for Nonlinear Systems,” Int. J. Fuzzy Sets and Systems, Vol. 48, pp. 279-287, 1992.
[45] S. G. Tzafestas and G. G. Rigatos, “Design and Stability Analysis of a New Sliding-mode Fuzzy Logic Controller of Reduced Complexity,” Machine Intelligence and Robotic Control, Vol. 1, No. 1, pp. 27-41, 1999.
[46] R. F. Fung, K. W. Chen and J. Y. Yeh, “Fuzzy Sliding Mode Controlled Slider-crank Mechanism Using a PM Synchronous Servo Motor Drive,” Int. .J Mechanical Sci., Vol. 41, pp. 337-355, 1999.
[47] C. M. Lin, T. Y. Chen, W. Z. Fan and Y. F. Lee, "Adaptive Fuzzy Sliding Mode Control for a Two-link Robot," IEEE International Conf. on Robotics and Biomimetics, pp. 581-586, 2005.
[48] C. C. Kung, T. Y. Kao and T. H. Chen, "Adaptive Fuzzy Sliding Mode Controller Design," Proceedings of the 2002 IEEE International Conf. on Fuzzy Systems, Vol. 1, pp. 674-679, 2002.
[49] B. Yoo, S. Jeoung, K. Im, I. So and W. Ham, "Adaptive Fuzzy Sliding Mode Control of Nonlinear System: The First Control Scheme," Proceedings of the 1996 IEEE IECON 22nd International Conf. on Industrial Electronics, Control, and Instrumentation, Vol. 1, pp. 590-595, 1996.
[50] S. Jeoung, J. Han, K. Im, W. Ham and B. Yoo,"Adaptive Fuzzy Sliding Mode Control of Nonlinear System: The Second Control Scheme," Proceedings of the 1996 IEEE IECON 22nd International Conf. on Industrial Electronics, Control, and Instrumentation, Vol. 1, pp. 269-274, 1996.
[51] B. J. Choi, S. W. Kwak and B. K. Kim, “Design of a Single-input Fuzzy Logic Controller and Its Properties,” Fuzzy Sets and Systems, Vol. 106, pp. 299-308, 1999.
[52] B. J. Choi, S. W. Kwak and B. K. Kim, "Design and Stability Analysis of Single-input Fuzzy Logic Controller," IEEE Transactions on Systems, Man and Cybernetics, Vol. 30, pp. 303-309, April 2000.
[53] S.M. Ayob, Z. Salam and N.A. Azli, "Simple PI Fuzzy Logic Controller Applied in DC-AC Converter," IEEE International Power and Energy Conference, pp. 393-398, 2006.
[54] S. Y. Chen, F. M. Yu and H. Y. Chung, “Decoupled Fuzzy Controller Design with Single-input Fuzzy Logic,” Fuzzy Sets and Systems, Vol. 129, pp. 335-342, 2002.
[55] V. I. Utkin, “Variable Structure Systems with Sliding Modes,” IEEE Trans. Automat. Control, Vol. 22, pp. 212-222, 1977.
[56] S. Y. Yi and M. J. Chung, “Robustness of Fuzzy Logic Control for an Uncertain Dynamic System,” IEEE Transaction on Fuzzy Systems, Vol. 6, No. 2, pp. 216-225, May 1998.
[57] S. C. Lin and Y. Y. Chen, “Design of Adaptive Fuzzy Sliding Mode for Nonlinear System Control,” IEEE Int. Conf. on Fuzzy Systems, Orlando, pp. 35-39, 1994.
[58] L. X. Wang, “Stable Adaptive Fuzzy Control of Nonlinear System,” IEEE Transaction on Fuzzy Systems, Vol. 1, No. 2, pp. 146-155, May 1993.
[59] T. Yu and D. Velez-Diaz, "Robust Fuzzy Control for a Class of Nonlinear Systems with Uncertainty," Proceedings of the 41st IEEE Conference on Decision and Control, Vol. 1, pp. 179-184, 2002.
[60] D. A. Haessig and B. Friedland, “On The Modeling and Simulation of Friction,” ASME Journal of Dynamic Systems, Measurement and Control, Vol. 113, pp. 354-362, 1991.
[61] B. Armstrong-Helouvry, P. Dupont and C. C. de Wit, “A Survey of Models, Analysis Tools and Compensation Methods for The Control of Machines with Friction,” Automatica, Vol. 30, No. 7, pp. 1083-1138, 1994.
[62] B. Friedland and S. Mentzelopoulou, “On Estimation of Dynamic Friction,” Proceedings of the 32nd Conference on Decision and Control, pp. 1919-1924, December 1993.
[63] G. Song, Y. Wang, L. Cai and R. W. Longman, “A Sliding-mode Based Smooth Adaptive Robust Controller for Friction Compensation,” Proceedings of the American Control Conference, pp. 1382-1386, June 1995.
[64] U. Itkis, Control Systems of Variable Structure, New York, Wiley. 1976.
[65] V. I. Utkin, J. Guldncr and J. Shi, Sliding Mode Control in Electromechanical Systems, Taylor & Francis, 1999.
[66] K. K. D. Young, “A Variable Structure Model Following Control Design for Robotic Application,” IEEE Trans. Robot. Automat., Vol. 4, pp. 556-561, October 1988.
[67] L. Guzzella and H. P. Geering, “Model Following Variable Structure Control for a Class of Uncertain Mechanical Systems,” Proc. 25th IEEE Conf. Decision Contr., Vol. 3, pp. 312-316, December 1986.
[68] T. L. Chem and J. Chang, ”DSP-based Induction Motor Drives Using Integral Variable Structure Model Following Control Approach,” IEEE International Electric Machines and Drives Conference Record, pp. 9.1-9.3.
[69] S. Singh, “Adaptive Model Following Control of Nonlinear Robotic Systems,” IEEE Transactions on Automatic Control, Vol. 30, No. 11, pp. 1099-1100, November 1985.
[70] James A. Pender, Welding, McGraw-Hill, 1968.
[71] M. I. Boulos, P. Fauchais and E. Pfender, Thermal Plasma, Fundamentals and Applications, Vol. 1, Plenum Press, 1994.
[72] C. J. Holslag, Arc Welding Handbook, McGraw-Hill, 1924.
[73] Leonard Koellhoffer, Shielded Metal Arc Welding, Wiley, 1983.
[74] 褚文和,SMAW焊接系統的動態與控制,國立中央大學,博士論文,民國93年。
[75] 胡繩蓀,現代弧焊電源及其控制--焊接工程師系列教程,機械工業出版社,北京市,中國,2007。
[76] 任廷春,弧焊電源--職業技術院校規劃教材,第二版,機械工業出版社,北京市,中國,2005。
[77] 潘際鑾,現代弧焊控制,機械工業出版社,北京市,中國,2000。
[78] 陳裕川,現代焊接生產實用手冊委員會,機械工業出版社,北京市,中國,2005。
[79] B. K. Bose, Power Electronics and AC Drives, Prentice-Hall, Inc, Englewood Cliffs, 1986.
[80] J. N. Juang, Applied System Identification, Prentice-Hall, Inc. Englewood Cliffs, 1994.
[81] 趙清風,控制之系統識別,初版,全華科技圖書股份有限公司,台北市,台灣,民國90年。
[82] L. Slotine, Applied Nonlinear Control, Prentice-Hall, Inc, Englewood Cliffs, 1991.
[83] J. T. Sponner, Stable Adaptive Control and Estimation for Nonlinear Systems – Neural and Fuzzy Approximator Techniques, Wiley, 2002.
[84] H. K. Khalil, Nonlinear Systems, Upper Saddle River, NJ: Prentice Hall, 1996.
[85] H. G. Kwatny and G. L. Blankenship, Nonlinear Control and Analytical Mechanics – A Computational Approach, ,2000.[86] E. M. Mamdani, “Application of Fuzzy Algorithms for Control of Simple Dynamic Plant,” Proc. IEE, Vol. 121, No. 12, pp. 1585-1588, 1974.
[87] L. A. Zadeh, Theory of Fuzzy Sets, Berkeley: Electronics Research Laboratory, College of Engineering, University of California, 1977.
[88] K. Araki, X. Chen, J. Chen, Y. Ishino and T. Mizuno, “Application of a Model Reference Fuzzy Adaptive Control to the Spot Welding System,” Proc. of SICE Annual Conference II, pp. 1139-1144, July, 1996.[89] S. C. Lin and Y. Y. Chen, “Design of Self-learning Fuzzy Sliding Mode Controllers Based on Genetic Algorithms,” Fuzzy Sets and Systems, pp. 139-153, 1997.
[90] X. Yu, Z. Man and B. Wu, “Design of Fuzzy Sliding-mode Control Systems,” Fuzzy Sets and Systems, Vol. 95, pp. 295-306, 1998.
[91] Y. C. Hsu, G. Chen, S. Tong and H. X. Li, “Intelligent Fuzzy Modeling and Adaptive Control for Nonlinear Systems,” Information Science, Vol. 153, pp. 217-236, 2003.
[92] M. Abdelrahman, “Feedback Linearization Control of Current and Arc Length in GMAW Systems,” IEEE International Conference, American Control Conference 3, pp. 1757-1761, 1998.
[93] Y. M. Chaec and G. H. Choe, et al., “A New Instantaneous Output Current Control Method for Inverter Arc Welding Machine,” IEEE PRCS’99 Records Vol. 1, pp. 521-528, 1999.
[94] R. N. Gasimov and A. Yazici, “A Nonlinear Programming Approach for The Sliding Mode Control Design,” Appl. Math Model, Vol. 29, pp. 1135-1148, 2005.
[95] 楊憲東,葉芳栢,線性與非線性控制理論,初版,全華科技圖書股份有限公司,台北市,台灣,民國86年。
[96] 自動控制工程手冊編輯小組,自動控制—中國電機工程師手冊第五篇,初版,中國電機工程學會,台灣,民國86年。
[97] C. Canudas de Wit, “A New Model for Control of Systems with Friction,” IEEE Transactions on Automatic Control, Vol. 40, No.3, pp. 419-425, 1995.
[98] R. A. DecArlo, S. H. Zak and G. P. Matthews, “Variable Structure Control of Nonlinear Multivariable Systems: A Tutorial,” Proc. IEEE, Vol. 76 No. 3, pp. 1209-1213, 1998.
[99] S. Hui and S. Zak, “Robust Control Synthesis for Uncertain/Nonlinear Dynamic Systems,” Automatica, Vol. 28, No. 2, pp. 289-298, 1999.
[100] B. Drazenovic, “The Invariance Condition in Variable Structure System,” Automatica, Vol. 12, No. 2, pp. 287-295, 1969.
指導教授 董必正(Pi-Cheng Tung) 審核日期 2007-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明