博碩士論文 88323024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:164 、訪客IP:3.138.105.124
姓名 唐文賢(Wen-Xian Tang )  查詢紙本館藏   畢業系所 機械工程研究所
論文名稱 高強度鋁合金擠型材之研究
相關論文
★ 鋁電解電容器用陽極鋁箔電蝕時電化學舉動之研究★ 汽車車體用鋁合金板材、擠型材之研究
★ 汽車車體骨架用6000系鋁合金低溫時效與擠型條件之研究★ 材料製程對汽車車體用鋁合金彎曲加工特性之影響研究
★ 鋁電解電容器用低壓陽極箔鋁箔之研發★ 鋁原箔對鋁電解電容器用高壓陽極鋁箔電解腐蝕舉動之影響研究
★ 電蝕條件對鋁電解電容器用高壓陽極鋁箔電蝕時電化學舉動之影響研究★ 鋁原箔製程參數對低壓鋁電解電容器用陽極鋁箔電解腐蝕舉動影響之研究
★ 微量元素對高壓鋁電解電容器用 陽極鋁箔電解腐蝕舉動影響之研究★ 微量元素對低壓鋁電解電容器用 陽極鋁箔電解腐蝕舉動影響之研究
★ 製程履歷對汽車車體用6022 鋁合金析出舉動之影響研究★ 製程條件對汽車車體用6022鋁合金析出擧動之影響
★ 均質化處理及時效處理條件對航空用鋁合金金屬疲勞舉動之影響★ 鋁電解電容器用高純度鋁箔直流電蝕擧動之模型分析
★ 腐蝕環境對航空用7050鋁合金金屬疲勞擧動之影響★ 低壓鋁電解電容器用鋁箔之電蝕條件最佳化研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究針對2024鋁合金以及7046鋁合金進行探討。探討不同合金成份、均質化處理(均質化溫度、冷卻速率)、擠製前之預熱溫度,對2024、7046鋁合金擠型性和機械性質的影響。
實驗以擠製時造成的最大壓力值以及表面品質來評估其擠型性,藉由DSC熱差分析儀分析材料擠出後以及經過時效後基地內析出狀態,利用光學顯微鏡(OM)、穿透式電子顯微鏡(TEM)觀察合金內再結晶情形以及析出強化相分布情形,以掃描式電子顯微鏡(SEM)觀察材料拉伸、衝擊斷裂面。
2024鋁合金最佳的均質化條件為溫度520℃時間10小時,可將鑄造時產生的偏析以及共晶相消除。雖然擠製前預熱溫度越高,擠製後的固溶程度越大,但是對2024鋁合金而言,預熱溫度越高,則越容易造成表面龜裂的現象,因此預熱溫度不可過高。高含量Cu、Mg的2024合金具有相當的強度,但是其衝擊韌性卻是最低的,而低含量Cu、Mg合金的強度雖低,但是卻有較高的衝擊韌性。
7046鋁合金最佳的均質化條件為溫度470℃時間24小時。擠製後造成基地的固溶度隨均質化溫度、預熱溫度的提高而增加,可得到較高的硬度值;但就強度而言,均質化溫度及預熱溫度越高,卻造成再結晶組織粗大,反而使強度下降。Zn含量改變對7046合金而言,對機械性質似乎沒有太大的影響,而Mg含量的改變就有明顯影響:7046-LMg雖然強度最低,但衝擊韌性卻是最高的。
摘要(英) The effects of the alloy compositions, homogenization and re-heating temperatures on the extrudability and mechanical properties of 2024 and 7046 aluminum alloys were investigated.
In this study, the extrudability was evaluated with the maximum extrusion pressure and the surface quality of the extruded products. The mechanical properties were investigated using tensile, impact and hardness tests. Differential scanning calorimetry (DSC) in conjunction with transmission electron microscopy (TEM) were used to characterize the matrix precipitates of the alloys. The microstructural and fractured characterization were examined by optical and scanning electron microscopy (SEM).
For the 2024 aluminum alloy, the homogenization treatment with 520℃ for 10h can effectively eliminate the segregation and eutectic phase of the cast alloy. The degree of the solute supersaturation was increased with the reheating temperatures, but too high reheating temperature would also cause a higher susceptibility to hot cracking during extrusion. The 2024 alloy with high Cu and Mg contents revealed a considerately tensile strength, but the lowest impact toughness; In contrast, the alloy with low Cu and Mg contents revealed lower strength but higher impact toughness. The existence of eutectic phase was found to significantly influence the toughness property but slightly on the tensile strength.
For the 7046 aluminum alloy, the optimum homogenization treatment examined was 470℃ for 24h. The degree of the solute supersaturation of the alloy after extrusion was increased with increasing the homogenization and reheating temperatures. The results indicated that the extrudability was increased with extrusion temperature. Higher hardness values would be obtained by increasing homogenization and reheating temperatures, however, the tensile strength was opposite to the hardness measurements. This strength decay was primarily due to the coarsening of the recrystallized structure. Moreover, the mechanical properties were significantly affected by the variation of the magnesium content, but slightly affected by the zinc content. The 7046 alloy with low Mg content exhibited the lowest strength but highest impact toughness.
關鍵字(中) ★ 2024
★  7046
★  擠型材
★  擠製
★  高強度鋁合金
關鍵字(英)
論文目次 Abstract ………………………………………………………… I
摘要 ……………………………………………………………… III
目錄 ……………………………………………………………… IV
表目錄 ……………………………………………………………VII
圖目錄 ……………………………………………………………VIII
第一章 緒論 ……………………………………………………… 1
一、序言 ………………………………………………………… 1
二、理論基礎與論文回顧 ……………………………………… 3
2-1 擠型塑性加工法………………………………………… 3
2-2 Al-Cu-Mg合金 …………………………………………… 3
2-2.1 Al-Cu-Mg合金簡介 ………………………………… 3
2-2.2 Al-Cu-Mg合金時效析出序列 ……………………… 4
2-3 Al-Zn-Mg合金 …………………………………………… 5
2-3.1 Al-Zn-Mg合金簡介 ………………………………… 5
2-3.2 Al-Zn-Mg合金時效析出序列 ……………………… 6
2-4 添加過渡元素(Mn、Cr、Zr)的影響 …………………… 8
2-5 擠製過程 ………………………………………………… 8
2-5.1 擠製過程 …………………………………………… 8
2-5.2 固溶處理 …………………………………………… 9
2-5.3 淬火 ………………………………………………… 9
2-5.4 時效處理 ……………………………………………10
2-6 擠製性探討 ………………………………………………11
2-6.1 合金成份對擠製性的影響 …………………………11
2-6.2 預熱溫度對擠製性的影響 …………………………11
2-7 時效 ………………………………………………………12
2-7.1 時效處理 ……………………………………………12
2-7.2 時效強化機構 ………………………………………12
2-8 加工組織的回復 …………………………………………14
2-8.1 再結晶 ………………………………………………14
2-8.2 擠型加工對微結構及機械性質的影響 ……………16
第二章 本文 ……………………………………………………… 18
一、前言 ………………………………………………………18
二、實驗步驟與方法 ………………………………………… 19
2-1 材料 ………………………………………………………19
2-2 擠製過程 ………………………………………………… 19
2-3 最大擠製壓力量測 ………………………………………20
2-4 微差掃描熱分析(DSC) …………………………………20
2-5 示差熱分析(DTA) ……………………………………… 21
2-6 硬度值量測 ………………………………………………21
2-7 拉伸試驗 …………………………………………………21
2-8 衝擊試驗 …………………………………………………22
2-9 金相觀察 …………………………………………………22
2-10 掃描式電子顯微鏡觀察(SEM) …………………………22
2-11 穿透式電子顯微鏡觀察(TEM) …………………………22
三、結果與討論 ……………………………………………… 24
3-1 2024平衡組成合金 …………………………………… 24
3-1.1 均質化處理及預熱溫度對最大擠製速度的影響…24
3-1.2 擠製壓力、DSC、硬度量測結果 ………………… 25
3-1.3 拉伸試驗結果 ………………………………………26
3-1.4 均質化後冷卻速度對擠製壓力、DSC、硬度的影響 27
3-2 2024合金成份調配的影響 …………………………… 28
3-2.1 合金調配對擠製壓力、DSC、硬度的影響 ……… 28
3-2.2 合金調配對拉伸強度、衝擊韌性的影響 ………… 29
3-3 2024合金之金相、微觀組織觀察 ………………………30
3-3.1 擠製後之金相OM觀察 ……………………………30
3-3.2 掃描式電子顯微鏡(SEM)觀察 …………………… 30
3-3.3 穿透式電子顯微鏡(TEM)觀察 ……………………31
3-4 7046平衡組成合金 ………………………………………32
3-4.1 均質化處理及預熱溫度對最大擠製速度的影響…32
3-4.2 擠製壓力、DSC、硬度量測結果 ……………………32
3-4.3 拉伸試驗結果 ………………………………………33
3-4.4 均質化後冷卻速度對擠製壓力、DSC、硬度的影響 34
3-5 7046合金成份調配的影響 ………………………………35
3-5.1 合金調配對擠製壓力、DSC、硬度的影響 ……… 35
3-5.2 合金調配對拉伸強度、衝擊韌性的影響 ………… 36
3-6 7046合金之金相、微觀組織觀察 ……………………… 37
3-6.1 擠製後之金相OM觀察 ……………………………37
3-6.2 掃描式電子顯微鏡(SEM)觀察 …………………… 37
3-6.3 穿透式電子顯微鏡(TEM)觀察 ……………………38
四、結論 ……………………………………………………… 39
參考文獻 ………………………………………………………40
表 ………………………………………………………………44
圖 ………………………………………………………………47
參考文獻 [1] G. Lang, A. F. Castle et al.: ”Extrusion”, Scientific
and Technical Development, Deutshe Gesellshaft fur
Metallkunde, 1982
[2] Chunming YAO, Klaus B. Mueller:Metal Flow and Temperatures
Developed During Direct Extrusion of AA2024, Proceedings of
the sixth international Aluminum Extrusion Technology
Seminar, pp.141?146, 1996.
[3] Simon P. Ringer, Kazuhiro Hono, Toshio Sakura, Ian J.
Polmear: Cluster Hardening In An Aged Al-Cu-Mg Alloy,
Scripta Materialia, Vol. 36, No 5, pp.517?521, 1997.
[4] H. C. Shin, J. R. Su, T. Y. Tseng:Effects of Solution Heat
Treatment Temperature on Microstructure and Mechanical
Properties of 2024 Aluminum Alloy, China Steel Technical
Report, No.11,pp.41?47, 1997
[5] C. Badini, F. Marino, E.Verne:Calorimetric Study on
Precipitation Path in 2024 Alloy and its SiC composite,
Materials Science and Engineering, A191, pp. 185?191, 1995.
[6] 日本輕金屬學會委員,”鋁合金之組織與性質”,日本輕金屬學會,
pp.202?209, 1991.
[7] I. J. Polmear:Light Alloys-Metallurgy of the Light Metals,
2nd ed., Edward Arnold, London, England, pp.18?143, 1989
[8] S. P. Ringer, I. J. Polmear, T. Sakurai:Effect of
additions of Si and Ag to ternary Al-Cu-Mg alloys in the
α+S phase field, Materials Science and Engineering,
A217/218, pp.273?276, 1996.
[9] A. K. Mukhopadhyay, K. S. Prasad and C. R. Chakravorty:
Precipitation in an Al-Cu-Mg Alloy Containing Trace
Addition of In, Materials Science Forum Vols, 217-222,
pp.753?758, 1996
[10]M. O. Speidel:Stress Corrosion Cracking of aluminum
alloys, Metallurgical and Materials Transactions A, vol.
6A, pp. 631~642, 1975
[11]W. Gruhl:Stress Corrosion Cracking of High Strength
Aluminum Alloys, Zeitscheift Fur Metallkunde, vol. 75, pp.
819?826, 1984
[12]K. Asano and K. I. Hirano:Precipitation Process in an Al- Zn-Mg Alloy, Trans. JIM, vol. 9, pp.24?34, 1968
[13]P. N. T. Unwin, R. B. Nicholson:The Nucleation and Initial
Stages of Growth of Grain Boundary Precipitates in Al-Zn-Mg
and Al-Mg Alloys, Acta Metallurgica, vol. 17, pp. 1379?
1393, 1969
[14]J.J. Thompson, E. S. Tankins and V. S. Agarwala:A Heat
Treatment for Reducing Corrosion and Stress Corrosion
Cracking susceptibilities in 7XXX Aluminum Alloys,
Materials Performance, pp.45?52, 1987
[15]T.H. Sanders, Jr. and E. A. Starke, Jr:Relationship of
Microstructure to Monotonic and Cyclic straining of two Age
Hardening Aluminum Alloys, Metallurgical and Materials
Transactions A, vol. 7A, pp. 1407?1418, 1976.
[16]L. Christodoulou and H. M. Flower:Hydrogen Embrittlement
and Trapping in Al-6%Zn-3%Mg, Acta Metall., vol. 28, pp. 481
?487, 1980.
[17]G. W. Lorimer and R. B. Nicholson:Further Results on the
Nucleation of Precipitates in the Al-Zn-Mg system, Acta
Metallurgica, vol. 14, pp. 1009?1013, 1966
[18]M. Conserva, E. D. Russo and O. Caloni:Comparison of the
Influence of Chrominum and Zirconium on the Quench
Sensitivity of Al-Zn-Mg-Cu Alloys, Metallurgical
Transactions, Vol. 12, April, pp.1227?1232, 1971.
[19]A.J. Cornish and M.K.B. Day:The Effect of Variable
Quenching Conditions on the Relationship between the Stress-
Corrosion-Resistance, Tensile Properties, and
Microstructure of a High-Purity Al-Zn-Mg Alloy, J. Inst.
Metals, vol. 99, pp.377?384, 1971.
[20]日本輕金屬學會委員,”鋁合金之組織與性質”,日本輕金屬學會,
pp.289, 1991.
[21]J.Langerweger:Aluminum Technology, pp.216?222, 1980.
[22]Oddvin Reiso:The Effect of Composition and Homogenization
Treatment on Extrudability of AlMgSi Alloys, Proceedings of
Third International Aluminum Extrusion Technology Seminar,
Atlanta, pp.31?45, 1984.
[23]R. E. Reed-Hill and R. Abbaschian:Physical Metallurgy
Principles, 3rd ed., Boston, PWS Publishing Company, pp.515-
535, 1991.
[24]C.E. Deiter:Mechanical Metallurgy, 3rd ed., McGraw-Hill,
pp.65?158, 1986.
[25]劉國雄、林樹均、李勝隆、鄭晃忠、葉均蔚:工程材料科學,全華科
技圖書出版,台北,台灣,pp.433?486,民國82年7月。
[26]A.K. Vasudevan and R. D. Doherty:Aluminum Alloys -
Contemporary Research and Applications, Academic Press,
Inc., San Diego, pp.35?170, 1989.
[27]T. Sheppard:Temperature and speed effect in hot extrusion
of aluminumalloys, Metal Technology, pp.130?140, April
1981.
[28]Wolf-Dieter Finkelnburg, Gunther Scharf:Some Investigation
on the Metal Flow during Extrusion of Al Alloys,
Proceedings of Fifth International Aluminum Extrusion
Technology Seminar vol1, Chicago, pp.475?484, 1992.
[29]Wojciech Libura:The Strain Gradient on Microstructure and
Properties of Extruded Aluminum Extrusion Alloys,
Proceedings of Fifth International Aluminum Extrusion
Technology Seminar vol1, Chicago, pp.485?494, 1992.
[30]X.J. JIANG, B.NOBLE, B.HOLME, G.WATERLOO, and J.TAFTO:
Differential Scanning Calorimetry and Electron Diffraction
Investigation on Low-Temperature Aging in Al-Zn-Mg Alloys,
Metallurgical And Materials Transactions A Volume 31A,
pp.339~348, February 2000
[31]William D. Callister, Jr.:Materials Science and
Engineering, 3rd Edition, John Wiley&Sons inc, New York,
pp.99, 1993.
指導教授 歐炳隆(Bin-Lung Ou) 審核日期 2001-6-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明