博碩士論文 88323050 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:145 、訪客IP:18.116.40.177
姓名 夏夢苓(Meng-Ling Hsia )  查詢紙本館藏   畢業系所 機械工程研究所
論文名稱 化學機械研磨流場模擬實驗研究
相關論文
★ 變轉速之旋轉塗佈實驗研究★ 微小熱點之主動式冷卻
★ 大尺寸晶圓厚膜塗佈★ 科氏力與預塗薄膜對旋轉塗佈之影響
★ 微液滴對微熱點之 冷 卻★ 大尺寸晶圓之化學機械研磨實驗研究
★ 液晶顯示器旋轉塗佈研究★ 流體黏度對旋塗減量之影響
★ 微熱點與微溫度感測器製作★ 高溫蓄熱器理論模擬
★ 熱氣泡式噴墨塗佈★ 注液模式對旋轉塗佈之影響
★ 磁流體旋塗不穩定之研究★ TFT-LCD狹縫式塗佈研究
★ 彩色濾光片噴塗研究★ 科氏力對不穩定手指狀之影響及光阻減量研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究利用流場可視化實驗裝置及灰階度方法,觀測在化學機械研磨中,研磨液在研磨墊上之暫態變化,進而探討晶圓施壓大小對研磨速率與均勻性之影響。實驗結果發現對於8吋及12吋晶圓,壓力加大與提高研磨墊轉速,平均灰階度皆會隨之增高。此外,使用大尺寸晶圓已成為現今趨勢,目前晶圓尺寸已達12吋,相當接近研磨墊之半徑,若研磨墊尺寸隨之加大,則在轉動過程中易產生晃動、不穩定的現象,因此晶圓邊緣跨過研磨中心的研磨方式,亦是本文另一項研究的重點。首先,藉著計算研磨過程中晶圓之平均相對速度,來輔助說明晶圓位置與研磨率及均勻性的關係。研究結果發現,在固定晶圓與研磨墊轉速下,晶圓邊緣距研磨墊中心愈遠,則平均相對速度及平均灰階度都愈高,且發現在晶圓跨中心前,當晶圓與研磨墊轉速比等於1時,晶圓上各點的相對速度皆相同;而晶圓跨過研磨墊中心後,在跨過中心的區域裡,相對速度並不一致。因此在跨中心後所得之均勻性較差。而改善跨中心後研磨率的方法,可適當地調整晶圓及研磨墊轉速,使得晶圓上之平均相對速度一樣,則即使晶圓跨過研磨墊中心,亦可得到差不多的灰階度 (研磨率)。但均勻性變差的情形,還需要更多的研究。
關鍵字(中) ★ 化學機械研磨
★  灰階度
★  相對速度
★  移除率
★  非均勻性
關鍵字(英)
論文目次 目 錄
目錄Ⅰ
圖目錄III
表目錄V
符號說明VI
第一章 緒論.1
1.1 研究背景與動機.1
1.2 文獻回顧.4
1.2.1 CMP 研磨機構及原理.4
1.2.2 CMP流場模擬 ……………………………………….7
1.2.3 CMP流場實驗 ……………………………………….8
第二章 化學機械研磨流場模擬實驗裝置及方法 …………………..11
2.1實驗設備11
2.2影像分析方法12
2.3實驗方法13
2.4平均相對速度的計算14
第三章 結果與討論17
3.1平均相對速度與轉速及晶圓位置的關係17
3.2壓力對研磨率的影響18
3.3晶圓位置對研磨率的影響22
第四章 結論24
參考文獻26
附圖32
附表60
參考文獻 1. L. F. Johnson, K. A. Ingersoll and J. V. Dalton, “Planarizing of phosphosilicate glass films on patterned Si wafers”, J. Vac. Sci. Technol., B1, (Apr.-Jun.1983).
2. A. C. Adams and C. D. Capio, “Planarization of phosphorous-doped silicon dioxide”, J. Electrochem. Soc., 128, 423 (1981).
3. L. K. White, “Planarization properties of resistant polyimide coatings”, J. Electrochem. Soc., 130, 1543 (1983).
4. L. Debruin and J. M. F. G. Van Laarhoven, “Advanced multiple-step resist etchback planarization”, in Proc. IEEE V-MIC Conf., 404 (1988).
5. R. H. Wilson and P. A. Piacente, “Effect of circuit structure on Planarization resist thickness”, J. Electrochem. Soc. 133, 981 (1986).
6. G. C. Eiden, J. A. Hughes and P. K. Boyer, “Geometry independent deep trench etching refill and planarization for isolation of merged bipolar-CMOS devices”, j. J. Electrochem. Soc. Ext. Abstract, 84, 7 (Oct. 1984).
7. A. Schiltz and M. Pons, “Two-layer planarization process”, J. Electrochem. Soc., 133, 178 (1986).
8. A. N. Saxena and D. Pramanik, “Planarization techniques for multilevel metallization”, Solid - State technol., 29, 95 (1986).
9. D. B. Tuckerman and A. H. Weiberg, “Planarization of gold and aluminum thin films using a pulsed laser”, Solid - State technol., 29, 129 (1986).
10. S. K. Gupta and R. I. Chin, “Characterisation of spin-on-glass films as a planarizing dielectric”, in Proc. ACS Symp., 22, 295 (1986).
11. A. Schiltz, “Advantages of using spin-on-glass layer in intermediate dielectric planarization”, in Microcircuit Eng. Conf. Proc., 5, 413 (1986).
12. L. B. Rothman, “Process for forming passivated metal interconnection system with a planar surface”, J. Electrochem. Soc., 130, 1131 (1983).
13. H. Fritzsche et al., “Etching of tapered via holes in sandwiched dielectric interlayer for multilevel metallization”, in Proc. IEEE VMIC Conf., p. 253, 1985.
14. E. R. Sirkin and I. A. Blech, “A method of forming contacts between two conducting layers separated by a dielectric”, J. Electrochem. Soc., 131, 123 (1984).
15. P. Sanseau, A. Schiltz, G. Rabilloud and L. Verdet, “Improve lift-off pillar fabrication technique using a polyphenylquinozaline polymer”, in Proc. Electrochem. Soc., 17, 170 (1988).
16. W. L. Patrick, W. L. Guthrie, C. L. Standley and P. M. Schiable, “Application of chemical mechanical polishing to fabrication of VLSI circuit interconnections”, J. Electrochem. Soc., 138, 1778 (1991).
17. I. Ali, R. Sudipto and R. Shinn, “Chemical polishing of interlayer dielectric”, Solid State Technology, 63 (Qct. 1994).
18. T. Izumitani, “Polishing, lapping and diamond grinding of optical glasses”, Material Science and Technology, Vol. 17, Glass Π, ed. By M. Tomozawa and R. H. Doremus, Academic Press, New York, 115 (1979).
19. T. Izumitani, “Polishing mechanism of optical glasses”, Glass Technology, 12, 131 (1971).
20. F. W. Preston, “The theory and design of plate glass polishing machines”, J. Soc. Glass Technology, 11, 214 (1927).
21. S. R. Runnels and L. M. Eyman, “Tribology analysis of chemical-mechanical polishing”, J. Electrochem. Soc., 141, 1698 (1994).
22. S. R. Runnels, “Feature-Scale fluid-based erosion modeling for chemical mechanical polishing”, J. Electrochem. Soc., 141, 1900 (1994).
23. F. Zhang and A. Busnaina, “The Role of Particle Adhesion and Surface Deformation in Chemical Mechanical Polishing Processes”, Electrochemical and Solid-State Letters, 1, 184 (1998).
24. Q. Luo, S. Ramarajan and S. V. Babu, “Modification of the Preston equation for the chemical-mechanical polishing of copper”, Thin Solid Films, 335, 160 (1998).
25. 蔡明義 蔡志成 蔡明蒔 “應用田口法於晶片化學機械平坦化製程參數之實驗探討” 中國機械工程學會第十六屆全國學術研討會 第五冊, 541 (中華民國八十八年十二月).
26. B. Zhao and F. G. Shi, “Chemical Mechanical Polishing : Threshold Pressure and Mechanism”, Electrochemical and Solid-State Letters, 2, 145 (1999).
27. W. T. Tseng, J. H. Chin, and L. C. Kang, “Comparative study on the roles of velocity in the material removal rate during chemical mechanical polishing”, J. Electrochem. Soc., 146, 1952 (1999).
28. C. Y. Chen, C. C. Yu, S. H. Shen, and M. Ho, “Operational Aspect of Chemical Mechanical Polishing Polish Pad Profile Optimization”, J. Electrochem. Soc., 147, 3922 (2000).
29. Y. Hayashi, M. Sakurai, T. Nakajima and K. Hayashi, “Ammonium-salt-added silica slurry for the chemical mechanical polishing of the interlayer dielectric film planarization in ULSIS”, Jpn. J. Appl. Phys., 34, 1037 (1995).
30. C. Millot, “Geology of clay”, Springer-Uerrlag, New York, 55 (1970).
31. A. Kaller, Mschr. Feinmech. Opt., 79, 135 (1962).
32. L. M. Cook, “Chemical Processes in Glass Polishing”, J. Non-cryst. Solids, 120, 152 (1990).
33. F. B. Kaufman, D.B. Thompson, R. E. J. Broadie, M. A. Jaso, W. L. Guthrie, D. J. Pearson and M. B. Small, “Chemical—mechanical polishing for fabricating patterned W metal features as chip interconnects”, J. Electrochem. Soc., 138, 3460 (1991).
34. M. Tomozawa, K. Yang, H. Liang, S. Ganeshkumar, W. Fortino, “Effect of Slurry Viscosity Modification on Oxide and Tungsten CMP”, Wear, 214, 10 (1998).
35. H. W. Chiou, L. J. Chen and H. C. Chen, “On monitoring CMP removal rate by in-situ temperature measurements”, Proc. of VIMIC Specialty Conference on CMP Planarization, 131 (1997).
36. H. W. Chiou and L. J. Chen, “Proportional -integral-derivative (PID) run to run control of CMP removal rate”, Proc. of VIMIC Specialty Conference on CMP Planarization, 375 (1997).
37. S. Sivaram, H. Bath, E. Lee, R. Leggett, and R. Tolles, “Measurement and Modeling of Pattern Sensitivity during Chemical Mechanical Polishing of Interlevel Dielectrics”, Technical Report, SEMATECH, Austin, TX. (1992).
38. S. R. runnels and T. Olavson, ”Optimizing wafer polishing through phenomenological modeling”, J. Electrochem. Soc., 142, 2032 (1995).
39. J. Warnock, “Two-dimensional process model for chemimechanical polish planarization”, J. Electrochem. Soc., 138, 2398 (1991).
40. C. W. Liu, B. T. Dai and C. F. Yeh, “Characterization of the chemical-mechanical polishing process based on Nanoindentation measurement of dielectric film”, J. Electrochem. Soc., 142, 3098 (1995).
41. D. Wang, J. Lee, K. Holland, T. Bibby, S. Beaudoin, and T. Cale, “Von Mises Stress in Chemical Mechanical Polishing Processes”, J. Electrochem. Soc., 144, 1121 (1997).
42. M. N. Fu and F. C. Chou, “Flow simulation for chemical mechanical planarization”, Jpn. J. Appl. Phys., 38, 4709 (1999).
43. S. R. Runnels, “Advances in physically based erosion simulators for CMP”, J. Electronic Materials, 25, 1574 (1996).
44. A. Modak, P. Monteith and N. Parekh, “Components of within-wafer nonuniformity in a dielectric CMP process.”, Proc. Of CMP-MIC Conference, 169 (1997).
45. T. F. A. Bibby, R. Harwood, D. Schey and K. McKinley, “Cartesian coordinate maps for chemical mechanical planarization uniformity characterization.”, Thin Solid Film, 308-309, 512 (1997).
46. D. G. Thakurta, C. L. Borst, D. W. Schwendeman, R. J. Gutmann, and W. N. Gill, “Pad porosity, compressibility and slurry delivery effects in chemical-mechanical planarization : modeling and experiments”, Thin Solid Films, 336, 181 (2000).
47. J. Coppeta, C. Rogers, A. Philipossian and F. B. Kaufman, “A technique for measuring slurry flow dynamics during chemical mechanical polishing”, Proc. of Material Research Society, 447, 95 (1996).
48. J. Coppeta, C. Rogers, A. Philipossian and F. B. Kaufman, “Characterizing slurry flow during CMP using laser induced fluorescence”, Proc. of CMP-MIC Conference, 307 (1997).
49. J. Coppeta, C. Rogers, A. Philipossian, F. Kaufman and L. Racz, “Pad effects on slurry transport beneath a wafer during polishing”, Third International Chemical Mechanical Polish Planarization for ULSI Multilevel Interconnection Conference, Santa Clara, CA, USA, 36 (1998).
50. J. Coppeta, C. Rogers, L. Racz, A. Philipossian and F. B. Kaufman, “Investigating slurry transport beneath a wafer during chemical mechanical polishing processes”, J. Electrochem. Soc., 147, 1903 (2000).
51. Z. Stavreva, D. Zeidler, M. Plotner, and K. Drescher, “Characteristics in chemical mechanical polishing of copper: comparison of polishing pads”, Appl. Surf. Sci., 108, 39 (1997).
52. S. Sundararajan, D. G. Thakurta, D. W. Schwendeman, S. P. Murarka and W. N. Gill, “Two-domensional wafer-scale chemical mechanical planarization models based on lubrication theory and mass transport”, J. Electrochem. Soc., 146, 761 (1999).
53. Z. Stavreva , D. Zeidler, M. Plotner, and K. Drescher, “Chemical mechanical polishing of copper for multilevel metallization”, Appl. Surf. Sci., 91, 192 (1995).
54. F. C. Chou, M. N. Fu and M. W. Wang, “A general optimization for slurry inject during chemical mechanical planarization”, J. Electrochem. Soc., 147, 3873 (2000).
55. D. Bullen, A. Scarfo, A. Koch, D. P. Bramono, J. Coppeta, and L. Racz, “In Situ Technique for Dynamic Fluid Film Pressure Measurement during Chemical Mechanical Polishing”, J. Electrochem. Soc., 147, 2741 (2000).
指導教授 周復初(Fu-Chu Chou) 審核日期 2001-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明