博碩士論文 88323073 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.21.246.99
姓名 陳文鈞(Wen-Chen Cheng )  查詢紙本館藏   畢業系所 機械工程研究所
論文名稱 數值模擬甲烷在多孔性介質爐燃燒現象及氫氣對其影響之研究
相關論文
★ 熱塑性聚胺酯複合材料製備燃料電池 雙極板之研究★ 以穿刺實驗探討鋰電池安全性之研究
★ 金屬多孔材應用於質子交換膜燃料電池內流道的研究★ 不同表面處理之金屬發泡材於質子交換膜燃料電池內的研究
★ PEMFC電極及觸媒層之電熱流傳輸現象探討★ 熱輻射對多孔性介質爐中氫、甲烷燃燒之影響
★ 高溫衝擊流熱傳特性之研究★ 輻射傳遞對磁流體自然對流影響之研究
★ 小型燃料電池流道設計與性能分析★ 雙重溫度與濃度梯度下多孔性介質中磁流體之雙擴散對流現象
★ 氣體擴散層與微孔層對於燃料電池之影響與分析★ 應用於PEMFC陰極氧還原反應之Pt-Cu雙元觸媒製備及特性分析
★ 加熱對肌肉組織之近紅外光光學特性影響之研究★ 超音速高溫衝擊流之暫態分析
★ 質子交換膜燃料電池陰極端之兩相流模擬與研究★ 矽相關半導體材料光學模式之實驗量測儀器發展
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文以二維模式模擬、計算氣體燃料在多孔性介質燃燒爐中之燃燒現象。文中之數值模擬係利用熱流試算軟體STAR─CD,並於數值模型中加入額外的副程式,以離散座標法解,包含放射、吸收、非等向散射及非灰效應的完整之輻射熱傳方程式。
探討甲烷與空氣混合之燃燒與加入氫氣時對甲烷在多孔性介質爐中燃燒現象之影響。討論當量比、流速、火焰位置對火焰結構的影響。亦探討陶瓷塊之堆疊方式、孔隙率、散射比、光學厚度等不同參數的影響。對氫氣而言,氫氣反應速率較快,需較高入口速度;吹熄或回火狀態下,添加氫氣的火焰位於較下游的位置,最高溫度幾乎不變,但整體爐體溫度有較高的趨勢。
關鍵字(中) ★ 多孔性介質爐
★  熱輻射
★  燃燒
★  當量比
關鍵字(英)
論文目次 目錄
誌謝I
摘要II
目錄III
表目錄VI
圖目錄VII
第一章緒論1
1.1前言1
1.2文獻回顧4
1.2.1多孔性介質爐4
1.2.2輻射模式:離散座標法10
1.3本文研究方向12
第二章數學模式14
2.1基本假設14
2.2統御方程式15
2.3邊界條件18
2.4參數定義20
2.4.1當量比20
2.4.2吹熄極限與回火極限21
2.4.3消散係數22
2.4.4散射比22
2.4.5光學厚度22
2.4.6孔隙率22
2.4.7圓球的平均直徑23
2.4.8熱傳導係數24
2.4.9穿透率25
2.5輻射熱傳方程式25
2.6模擬燃燒的方法30
第三章數值方法33
3.1爐體模型與格點系統33
3.2解題方法34
第四章結果與討論36
4.1程式驗證與實驗結果比較36
4.2吹熄極限與回火極限比較37
4.3當量比之影響38
4.4流速之影響38
4.5火焰位置之影響39
4.6不同爐體結構之影響40
4.6.1不同陶瓷塊堆疊之影響40
4.6.2孔隙率之影響41
4.6.3不對稱因子之影響41
4.6.4散射比之影響43
4.6.5光學厚度之影響45
4.7添加氫氣之影響46
4.7.1吹熄與回火極限比較46
4.7.2不同氫氣比率之影響47
4.7.3不同入口速度之影響48
第五章結論與建議50
5.1結論50
5.2未來研究方向與建議52
參考文獻77
參考文獻 [ 參考文獻]
參考文獻
[1]Hsu, P.-F., “Analytical and Experimental Study of Combustion in Porous Inert Media,” Ph.D. Dissertation, Department of Mechanical Engineering, The University of Texas at Austin, 1991.
[2]Evans, W. D., “Experimental Stability Limits of Methane Combustion Inside a Porous Ceramic Matrix,” M.S. Thesis, Department of Mechanical Engineering, The University of Texas at Austin, 1991.
[3]Weinberg, F. J., “Combustion Temperature: The Future?” Nature, Vol. 233, pp. 239-241, 1971.
[4]Lloyd, S. A., and Weinberg, F. J., “A Burner for Mixtures of Very Low Heat Content,” Nature, Vol. 251, pp. 47-49, 1974.
[5]Lloyd, S. A., and Weinberg, F. J., “Limits to Energy Release and Utilisation from Chemical Fuels,” Nature, Vol. 257, pp. 367-370, 1975.
[6]Hardesty, D. R., and Weinberg, F. J., “Burners Producing Large Excess Enthalpies,” Combustion Science and Technology, Vol. 8, pp. 201-214, 1974.
[7]Hardesty, D. R., and Weinberg, F. J., “Converter Efficiency in Burner Systems Producing Large Excess Enthalpies,” Combustion Science and Technology, Vol. 12, pp. 153-157, 1976.
[8]Takeno, T., and Sato, K., “An Excess Enthalpy Flame Theory,” Combustion Science and Technology, Vol. 20, pp. 73-84, 1979.
[9]Takeno, T., Sato, K., and Hase, K., “A Theoretical Study on an Excess Enthalpy Flame,” Eighteenth Symposium (International) on Combustion/The Combustion Institute, pp. 465-472, 1981.
[10]Kotani, Y., and Takeno, T., “An Experimental Study on Stability and Combustion Characteristics of an Excess Enthalpy Flame,” Nineteenth Symposium (International) on Combustion/The Combustion Institute, pp. 1503-1509, 1982.
[11]Echigo, R., Yoshizawa, Y. Hamamura, K., and Tomimura, T., “Analytical and Experimental Studies on Radiative Propagation in Porous Media With Internal Heat Generation,” Proceedings of the 8th International Heat Transfer Conference, San Francisco, CA, Vol. II, pp. 827-832, 1986.
[12]Chen, Y.-K., Matthews, R. D., and Howell, J. R., “The Effect of Radiation on the Structure of Premixed Flame within a Highly Porous Inert Medium,” 1987 ASME Winter Annual Meeting, ASME HTD-81.
[13]Chen, Y.-K., Hsu, P.-F., Lim, I.-G., Lu, Z.-H., Matthews, R. D., Howell, J. R., and Nichols, S. P., “Experimental and Theoretical Investigation of Combustion within Porous Inert Media,” Proceedings of the Twenty-Second Symposium (International) on Combustion, Seattle, Washington, pp. 22-207, 1988.
[14]Sathe, S. B., Peck, R. E., and Tong, T.-W., “Flame Stabilization and Multimode Heat Transfer in Inert Porous Media: A Numerical Study,” Combustion Science and Technology, Vol. 70, pp. 93-109, 1990.
[15] Sathe, S. B., Peck, R. E., and Tong, T.-W., “A Numerical Analysis of Heat Transfer and Combustion in Porous Radiant Burners,” International Journal of Heat and Mass Transfer, Vol. 33, No. 6, pp. 1331-1338, 1990.
[16]Tong, T.-W., and Sathe, S. B., “Heat Transfer Characteristics of Porous Radiant Burners,” Journal of Heat Transfer, Vol. 113, pp. 423-428, 1991.
[17]Hsu, P.-F., Howell, J. R., and Matthews, R. D., “A Numerical Investigation of Premixed Combustion within Porous Inert Media,” ASME/JSME Thermal Engineering Proceedings, Vol. 4, pp. 225-231, 1991.
[18]Evans, W. D., Howell, J. R., and Varghese, P. L., “The Stability Limits of Methane Combustion Inside a Porous Ceramic Matrix,” AIAA/ASME Joint Propulsion Conference, Sacramento, California, 1991.
[19]Hsu, P.-F., Howell, J. R., and Matthews, R. D., “A Numerical Investigation of Premixed Combustion within Porous Inert Media,” Transactions of the ASME, Vol. 115, pp. 744-750, 1993.
[20]Hsu, P.-F., Evans, W. D., and Howell, J. R., “Experimental and Numerical Study of Premixed Combustion within Nonhomogeneous Porous Ceramics,” Combustion Science and Technology, Vol. 90, pp. 149-172, 1993.
[21]Hsu, P.-F., “Experimental Study of the Premixed Combustion within the Nonhomogenous Porous Ceramic Media,” HTD-Vol. 328, National Heat Tranfer Conference, Vol. 6, ASME 1996.
[22]C.L. Hackert, J. L Ellzey, and O A. Ezekoye, “Combustion and Heat Transfer in Model Two-Dimensional Porous Burners,” Combustion and Flame, Vol. 116, 1999.
[23]Marc D. Rumminger, D. Hamlin, Robert W. Dibble, “Numerical analysis of a catalytic radiant burner: effect of catalyst on radiant efficiency and operability,” Catalysis Today Vol. 47, 1999.
[24]G. Brener, K. Pickenacker, O. Pickenacjer, D. Trmis,k. Wawrzinek, and t. Weber, “Numerical and Experimental Investigation of Matrix-Stabilized Methane/Air Combustion in Porous Inert Media”, Combustion Institute, 2000.
[25]L. di Mare, T.A. Mihalik, G. Continillo, J.H.S. Lee, “Experimental and Numerical Study of Flammability Limits of Gaseous Mixtures in Porous Media,” Experimental Thermal and Fluid Science, Vol. 21, 2000.
[26]Tseng, C.-J. and Li, C.-H., “Thermally-Enhanced Combustion in a Porous Medium Burner,” Journal of the Chinese Society of Mechanical Engineers, Vol. 22, No. 3, 2001.
[27]蔡桓宇,數值模擬多孔性介質燃燒爐中之熱增強燃燒現象;國立中央大學碩士論文;中壢;民國八十九年。

[28]Tseng, C.-J., “Liquid Fuel Combustion in Porous Ceramic Burners,” Ph.D. Dissertation, Department of Mechanical Engineering, The University of Texas at Austin, 1995.
[29]Tseng, C.-J., and Howell, J. R., “Liquid Fuel Combustion within Porous Inert Media,” Heat Transfer with Combined Modes, ASME-HTD, Vol. 299, pp. 63-69, 1994.
[30]Tseng, C.-J., and Howell, J. R., “Combustion of Liquid Fuels in a Porous Radiant Burner,” Combustion Science and Technology, Vol. 112, pp. 141-161, 1996.
[31]Kaplan, M., “The Combustion of Liquid Fuels within a Porous Media Radiant Burner,” M.S. Thesis, Department of Mechanical Engineering, The University of Texas at Austin, 1994.
[32]Kaplan, M., and Hall, M. J., “The Combustion of Liquid Fuels within a Porous Media Radiant Burner,” Experimental Thermal and Fluid Science, Vol. 11, pp. 13-20, 1995.
[33]S. Chandrasekhar, Radiative Transfer, Dover Publications, New York, 1996.
[34]Li, H.-Y., Özisik, M. N., and Tsai, J.-R., “Two-Dimensional Radiation in a Cylinder with Spatially Varying Albedo,” Journal of Thermophysics, Vol. 6, No. 1, pp. 180-182, 1992.
[35]Slah Jendoubi, HaeOk Skarda Lee, and Tae-Kuk Kim, “Discrete Ordinates Solutions for Radiatively Participating Media in a Cylindrical Enclosure,” Journal of Thermophysics and Heat Transfer, Vol. 7, No 2, April-June 1993.
[36]P. J. Coelho, J. M. Goncalves, and D. N. Trivic, “Modelling of Radiative Heat Transfer in Enclosures with Obstacles,” Int. J. Heat Mass Transfer, Vol. 41, Nos 4-5, 1998.
[37]Nuray Kayakol, Nevin Selcuk, Ian Campbell, Omer L. Gulder, “Performance of Discrete Ordinates Method in a Gas Turbine Combustor simulator,” Experimental Thermal and Fluid Science, Vol. 21, 2000.
[38]Bear, J., Dynamics of Fluids in Porous Media, Dover Publications, Inc., New York, 1972.
[39]Hiatt, J. P., and Hall, M. J., “Pore Scale Turbulence in Porous Ceramic Burners,” 1994 Technical Meeting of the Central States Section of the Combustion Institute, June, 1994.
[40]Bejan, A., Convection Heat Transfer, John Wiley & Sons, New York, Chap. 12, Sec. 2, 1995.
[41]S. Ergun, “Fluid Flow through Packed Columns,” Chem. Eng. Progr. , Vol. 48, No. 2, 1952
[42]Kaviany, M., Principles of Heat Transfer in Porous Media, Springer-Verlag, 1991.
[43]Bird, R. B., Stewart, W. E., and Lightfoot, E. N., Transport Phenomena, John Wiley & Sons, New York, 1960.
[44]Bird, R. B., Stewart, W. E., and Lightfoot, E. N., Transport Phenomena, John Wiley & Sons, New York, 1960.
[45]Kingery, W. D., Bowen, H. K., and Uhlmann, D. R., Introduction to Ceramics, Wiley, New York, 1975.
[46]Siegel, R., and Howell, J. R., Thermal Radiation Heat Transfer, Third Ed., Hemisphere Publishing Corp., Washington, DC., 1992.
[47]Chang, S. L., and Rhee, K. T., “Blackbody Radiation Functions,” International Communications of Heat Mass Transfer, Vol. 11, pp. 451-455, 1984.
[48]Hendricks, T. J., “Thermal Radiative Properties and Modeling of Reticulated Porous Ceramics,” Ph.D. Dissertation, Department of Mechanical Engineering, The University of Texas at Austin, 1994.
[49]Hsu, P.-F., and Matthews, R. D., “The Necessity of Using Detailed Kinetics in Models for Premixd Combustion within Porous Media,” Combustion and Flame, Vol. 93, pp. 457-466, 1993.
[50]Westbrook, C. K., and Dryer, F. L., “Simplified Reaction Mechanisms for the Oxidation of Hydrogen Fuels in Flames,” Combustion Science and Technology, Vol. 27, pp. 31-43, 1981.
[51]Ashok K. Varma, Ashok U. Chatwani, and Frediano V. Bracco, “Studies of Premixed Laminar Hydrogen-Air Flames Using Elementary and Global Kinetics Medels,” Combustion and Flame, Vol. 64, pp. 223-236, 1986.
[52]High-Tech Ceramics product literature, High-Tech Ceramics Co., Alfred, New York, 1988.
指導教授 曾重仁(Chung-Jen Tseng) 審核日期 2001-7-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明