博碩士論文 88323085 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:3.133.109.211
姓名 黃松鶴(Song-He Haung )  查詢紙本館藏   畢業系所 機械工程研究所
論文名稱 磁浮軸承之非線性控制
(The Nonlinear Control of a Magnetic Bearing System)
相關論文
★ 自動平衡裝置在吊扇上之運用★ 以USB通訊界面實現X-Y Table之位置控制
★ 液體平衡環在立式轉動機械上之運用★ 液流阻尼裝置設計與特性之研究
★ 液晶電視喇叭結構共振異音研究★ 液態自動平衡環之研究
★ 抑制牙叉式機械臂移載時產生振幅之設計★ 立體拼圖式組合音箱共振雜音消除之設計
★ 電梯纜繩振動抑制設計研究★ 以機器學習導入電梯生產結果預測之研究
★ 新環保冷媒R454取代R410A冷媒迴轉式單缸壓縮機效能分析與可靠性驗證★ 高速銑削Al7475-T7351的銑削參數與基因演算法研究
★ 自動化鞋型切削機之設計與實現★ 以FPGA為基礎之精密位置控制IC
★ CNC三維圓弧插補器★ PID與模糊控制在營建工程自動化的探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 磁浮軸承是一個非線性的系統,在這篇論文裡我們討論四種不同的非線性控制法則來實用於我們的磁浮軸承系統上。第一種控制法則是傳統的比例積分微分(PID)控制法,它的優點是容易闡述和簡單計算,同時它也是工業界最常用的控制法則。第二種控制法則是比例積分微分模糊增益程序(PID fuzzy gain scheduling)控制法,它說明人們對於比例積分微分增益程序控制的經驗可以用模糊控制法表達出來,並且能改善傳統固定比例積分微分增益值控制法的控制效果。第三種控制法則是滑動(sliding mode)控制法,在我們使用滑動控制法之前我們必須先做磁浮軸承的系統鑑別(system identification),然後根據系統鑑別所得的結果設計我們的滑動控制法則,滑動控制法對於系統的不確定性和外力的干擾能夠有效的抑制。最後一種控制法則是前饋式適應性控制(adaptive feedforward control),當系統的質心和幾何中心不在同一點時就會造成不平衡量的產生,前饋式適應性控制主要的就是消除由不平衡量所造成的不平衡力。
摘要(英) The magnetic bearing system is a nonlinear system. In this thesis, we discuss four different controllers. The first controller is PID controller. Its advantages are easily implemented and simple calculated. It is the best-known controller applied in industrial control processes. The second controller is fuzzy gain scheduling of PID controller. The human expertise on PID gain scheduling can be represented in fuzzy rules and it improves the performance of traditional PID controller with fixed parameters. The third controller is sliding mode controller. Before we use the sliding controller, we should do the system identification. And then we use the model from ID to design the sliding controller. The system is completely insensitive to parametric uncertainty and external disturbances when we use the sliding mode controller. The last one is the adaptive feedforward controller. When the principal axis of inertia is not coincident with the axis geometry it will cause an unbalance mass. The adaptive feedforward controller could reduce the unbalance force caused by an unbalance mass.
關鍵字(中) ★ 磁浮軸承 關鍵字(英) ★ magnetic bearing
論文目次 摘要……………………………………………………………………i
目錄……………………………………………………………………ii
第一章 簡介…………………………………………………………iii
第二章 磁浮軸承的簡介.……………..……………………………..iv
第三章 系統鑑別………………………...…………………………...v
第四章 磁浮軸承之控制器設計……….…………………………...vi
第五章 結論 ………………………………………………………vii
附錄:英文論文……………………………………………………viii
Contents
Abstract……………………..…………………………………………Ⅰ
Contents……………………..…………………………………………Ⅱ
List OF Figures………………….…………………………………….Ⅳ
List OF Tables…………………………………………………………Ⅵ
Chapter 1 Introduction
1.1 Background and Motivation for Research…………………………...1
1.2 Literature Review…………………2
1.3Thesis arrangement………………..2
Chapter 2 Introduction of Magnetic Bearing
2.1 Introduction………………………………………….4
2.2 Analysis of Magnetic Circuit……………………..5
2.3 Linearization for Magnetic Forces……………………6
2.4 Experimental Set-up of magnetic bearing………7
Chapter 3 System Identification
3.1 Introduction…………………………………………12
3.2 The Principle of System Identification…………14
3.3 Identification for Magnetic Bearing………………15
3.4 The Result of System Identification……………16
Chapter 4 The Controller Design for Magnetic Bearing
4.1 PID Controller……………………………………………20
4.2 Fuzzy Gain Scheduling of PID Controller…………….21
4.3 Sliding Mode Controller………………………………….23
4.4 Adaptive Feedforward Controller………………………27
Chapter 5 Discussion and Conclusion……………44
References………………………………………………………46
參考文獻 [1] R. R. Humphris, R. D. Kelm, D. W. Lewis, P. E. Allarie. “Effect of Control Algorithm on Magnetic Journal Bearing Properties”, Trans. of ASME, Journal of Engineering for Gas Turbines and Power, October 1986, Vol. 108, pp.624-632.
[2] L. Ljung, ”Matlab : System Identification Tool Box Use’s Guide”, The Math Works, Inc. 1997.
[3] S. Beale, B. Shafai, P. LaRocca, and E. Cusson, “Adaptive forced balancing for magnetic bearing control systems, ” in Proc. 31 st IEEE Conf. Decision and Control, Tucson, AZ, Dec. 1992, pp.3535-3539.
[4] S. Sivrioglu and K. Nonami, ”Sliding Mode Control With Time-Varying Hyperplane for AMB Systems”. IEEE/ASME Trans. On Mechatronics, Vol. 3, No. 1, March 1998.
[5] Z. Y. Zhao, M. Tomizuka, and S. Isaka, ”Fuzzy Gain Scheduling of PID Controllers”. IEEE Transactions On Systems, Vol. 23, No 5, September 1993.
[6] J. G. Ziegler, and N. B. Nichols, “Optimum settings for automatic controllers”. Trans. ASME, Vol. 64, pp. 759-768, 1942.
[7] C. C. Hang, K. J. Astrom, and W. K. Ho,” Refinements of the Ziegler-Nichols tuning formula,” Proc. IEE, Vol. 138, pp. 111-118, 1991.
[8] P. Z. Wang, S. Z. He and F. L. Xu, “Fuzzy Self-Tuning of PID Controllers”, Fuzzy Sets and System, Vol. 56, pp. 37-46,1993.
[9] J. Y. Hung, W. Gao and J. C. Hung, ”Variable Structure Control: A Survey”, IEEE Transactions on Industrial Electronics, Vol. 40, No. 1, pp. 2-22, February 1993.
[10] V.I. Utkin, “ Variable Structure Systems with Sliding Modes”, IEEE Transactions on Automatic Control, Vol. 22, No. 2, pp. 212-222, April 1977.
[11] G. Bartolini, A. Ferrara, and E.Usai, “Chattering Avoidance by Second-Order Sliding Mode Control”, IEEE Transactions On Automatic Control, Vol. 43, No. 2, February 1998.
[12] K. David Young, Vadim I. Utkin, and U. Ozguner, “A Control Engineer’s Guide to Sliding Mode Control”, IEEE Transactions On Control Systems Technology, Vol. 7, No. 3, May 1999.
[13] S. S. Lee, and J. K. Park, “Design of Reduced-Order Observer-Based Variable Structure Power System Stabiliser for Unmeasurable State Variables”, IEE Proc.-Gener. Transm. Disurib., Vol. 145, No.5, September 1998.
[14] H. S. Na and Y. Park, “An Adaptive Feedforward Controller for Rejection of Periodic Disturbances”, Journal of Sound and Vibration 201(4), pp. 427-435, 1997.
[15] K. Nonami, “Vibration Control of Rotor System by Active Control Bearings”, Trans. JSME C 51(417), pp. 2463-2471, 1985.
[16] K. Nonami, “Control for Vibration of Multi-Degree of Freedom System with Harmonic Excitation”, Trans. JSME C 57(334), pp. 364-370, 1991.
[17] K. Nonami and Z. H. L., ”Adaptive Unbalance Vibration Control of Magnetic Bearing System Using Frequency Estimation for Multiple Periodic Disturbances with Noise”, IEEE International Conf. On Control Applications, pp.576-581, 1999.
[18] 王文俊編著, 認識Fuzzy, 全華科技, 1997.
[19] 陳永平, 可變結構控制設計, 全華科技, 1999.
[20] 黃昭銘, 參數自我調整控制於非線性磁浮軸承系統之應用, 國立中央大學機械所碩士論文, 1995.
[21] 廖宜鵬, 全磁浮軸承系統之研究, 國立中央大學機械所碩士論文, 1997.
[22] 盧德偉, 滑動控制於磁浮避震平台之應用, 國立中央大學碩士論文, 1999.
指導教授 董必正(Pi-Cheng Tung) 審核日期 2001-7-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明