博碩士論文 89323062 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:68 、訪客IP:3.145.93.227
姓名 彭仕鈞(Shih-Chun Peng)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 高溫衝擊流熱傳特性之研究
(Heat Transfer Characteristics of a Hot Impinging Jet.)
相關論文
★ 熱塑性聚胺酯複合材料製備燃料電池 雙極板之研究★ 以穿刺實驗探討鋰電池安全性之研究
★ 金屬多孔材應用於質子交換膜燃料電池內流道的研究★ 不同表面處理之金屬發泡材於質子交換膜燃料電池內的研究
★ PEMFC電極及觸媒層之電熱流傳輸現象探討★ 熱輻射對多孔性介質爐中氫、甲烷燃燒之影響
★ 輻射傳遞對磁流體自然對流影響之研究★ 小型燃料電池流道設計與性能分析
★ 雙重溫度與濃度梯度下多孔性介質中磁流體之雙擴散對流現象★ 氣體擴散層與微孔層對於燃料電池之影響與分析
★ 應用於PEMFC陰極氧還原反應之Pt-Cu雙元觸媒製備及特性分析★ 加熱對肌肉組織之近紅外光光學特性影響之研究
★ 超音速高溫衝擊流之暫態分析★ 質子交換膜燃料電池陰極端之兩相流模擬與研究
★ 矽相關半導體材料光學模式之實驗量測儀器發展★ 燃料電池複合材料雙極板研發 及性能之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文係應用數值方法,探討在考慮輻射效應下,高溫衝擊流的熱傳分析。整個幾何模型由於軸對稱,簡化成二維模型。而紊流模式採用k-e模型。輻射熱傳利用離散座標法求解,包含氣體輻射及固體粉粒的散射效應。數值計算包含兩個部分,在高溫衝擊流主要改變參數為雷諾數大小、衝擊距離、壁面放射率、衝擊板的熱傳導係數以及氣體之光學性質(包括吸收係數和散射係數),來探討熱傳的特性﹔另一部份為超音速高溫衝擊流,主要探討改變噴嘴出口壓力以及噴嘴出口的馬赫數。
在高溫衝擊流部分,結果發現只考慮氣體輻射時,隨著氣體的吸收係數增加,壁面的輻射熱通量和全部熱通量會增加,壁面溫度也會跟著增加﹔當固體粉粒的大小從5µm 增加20µm時,在停滯點處的全部熱通量降低了50% ;衝擊距離從2個噴嘴直徑增加至12個噴嘴直徑時,停滯點的全部熱通量減少了93 %,而且溫度也降低了28%。當雷諾數從15000增加至100000時,停滯點放射出去輻射熱通量增加了93 %;改變衝擊板的熱傳導係數,熱傳導係數愈大能量愈容易從衝擊板散去,所以當熱傳導係數愈大時,衝擊板的溫度分布愈均勻。因此可知在高溫噴流系統下,輻射效應的影響是不容忽略的。
在超音速高溫衝擊流發現,在衝擊距離為4個噴嘴直徑長時,噴嘴出口壓力與周圍環境壓力比從1.0到3.0變化時,震波產生的位置會隨著壓力的增加遠離壁面,不過壓力很大時,增加的幅度較不明顯﹔而溫度則是隨著壓力增加而降低的趨勢;當馬赫數從1.0增加至2.7 時,震波的位置會離衝擊面愈近﹔可是再從2.7增加3.05時,震波的位置反而會慢慢分離而遠離壁面。此時受到震波位置不同的影響,溫度及壓力的分布也就明顯的不同,隨著震波靠近壁面,溫度和壓力會上升,但隨著震波的遠離,而有下降的趨勢。因此可知衝擊速度是一個很大的影響參數。
摘要(英) The heat transfer characteristics of a hot impinging jet with radiation effects are studied. Two-dimensional cylindrical, steady, turbulent flow is simulated using the k-e model. The discrete-ordinates method is used to solve the equation of radiative transfer for radiation. Solutions are presented for the temperature distribution, heat flux, Nusselt number, and pressure along the impingement wall. The effects of important parameters, such as optical properties (absorption and scattering coefficient of the gas), the nozzle-to-plate distance, the Reynolds number, the surface emissivity of the wall, the thermal conductivity of the plate, the nozzle exit pressure to the ambient pressure ratio (PR), and Mach number of the nozzle exit are examined.
Results show that the radiative heat flux and the total heat flux at the stagnation point are reduced by 94 percent and 77 percent respectively, when the absorption coefficient is decreased from 0.2 cm-1 to 0.005 cm-1. The total heat flux at the stagnation point is reduced by 50 percent approximately and the Nusselt number is reduced by 51 percent as the particle size is increased from 5µm to 20µm. As the emissivity is decreased from 0.9 to 0.1, the radiative heat flux from the impingement plate is decreased by 58 percent, and the total heat flux to the impingement plate is increased by 3 percent at the stagnation point. The temperature slightly decreases as the emissivity er is increased. As the nozzle-to-plate distance (z) is increased from 2 to 12 nozzle diameter (D), the total heat flux of the stagnation point is reduced by 93 percent approximately. The stagnation temperature drops by 28 percent and the Nusselt number is reduced by 93.5 percent when z/D is increased from 2 to 12. The net radiative heat flux increase as the Rc decreases. The temperature of the stagnation point is higher 34 percent as Rc increase from 565 to 15206. The radiative heat flux from the stagnation point is increased by 93 percent when the Reynolds number is increased from 15000 to 100000. When the plate temperature is high, the radiative effect becomes more important. As the Reynolds number increases from 15000 to 100000, the temperature at the stagnation point increases by 52 percent approximately.
The position of the shock wave has a profound effect on the temperature field, flow field, and pressure field distributions. When PR is increased the shock wave moves away from the impingement plate and hence increases the circulation zone between the shock wave and the impingement plate. The shock wave moves closer to the plate as the value is increased from 1.0 to 2.7. Again, the shock wave moves away from the plate and increases the circulation zone when the value is increased from 2.7 to 3.05. The velocity increases rapidly before the shock wave and decreases after the shock wave. As the value becomes larger, the temperature is decreased.
關鍵字(中) ★ 高溫衝擊流
★ 超音速衝擊流
★ 熱輻射
★ 離散座標法
關鍵字(英) ★ supersonic jet
★ radiation
★ hot impinging jet
★ discrete-ordinates method
論文目次 CONTENTS
誌謝……………………………………………………………………….I
中文摘要…………………………………………………………….…...II
英文摘要………………………………………………………………..IV
CONTENTS………………………………………………………….… VI
LIST OF FIGURES…………………………………………………..VIII
LIST OF TABLES…………………………………………………….XIV
NOMENCLATURE…………………………………………………..XV
CHAPTER 1 INTRODUCTION……………………………………….1
CHAPTER 2 MATHEMATICAL FORMULATION AND NUMERICAL METHODS………………………… 10
2-1 Governing equations…………………………………..10
2-2 Density approximations…………………………………13
2-3 Submodel for the radiative heat transfer………….…14
2-4 Numerical procedure……………………………………17
2-5 Grid independence test…………………………………19
2-6 Code validation………………………………………....20
CHAPTER 3 RESULTS AND DISCUSSION FOR THE SUBSONIC HOT IMPINGING JET…………………………………26
3-1 Effects of the absorption coefficient of the gas…………27
3-2 Effects of the particle sizes……………………………...29
3-3 Effects of the impingement wall emissivity…………….30
3-4 Effects of nozzle-to-plate distance.…………………..…31
3-5 Effects of the impingement plate thermal conductivity…32
3-6 Effects of the Reynolds number.………………………..34
CHAPTER 4 COMPUTATIONAL RESULTS AND DISCUSSION FOR A SUPERSONIC HOT IMPINGING JET……..……….55
4-1 Effects of the nozzle exit pressure.……………………..57
4-2 Effects of the nozzle exit Mach number…………….59
CHAPTER 5 CONCLUSIONS AND SUGGESTIONS………………75
5-1 Conclusions……………………………………………..69
5-2 Suggestions……………………………………………..71
Reference …………………………………………………………..72
參考文獻 [1] Martin, H., “Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces,” Advanced Heat Transfer, Vol. 13, 1977, pp. 1-60.
[2] Button, D. L. and Wilcox, D., “Impingement Heat Transfer - A Bibliography 1890-1975”, Previews Heat Transfer, Vol. 4, 1978, pp. 83-98.
[3] Viskanta, R., “Heat Transfer to Impinging Isothermal Gas Flame Jets,” Experimental Thermal and Fluid Science, Vol. 6, 1993, pp. 111-134.
[4] Abramovich, G. N., The Theory of Turbulent Jets, MIT Press, Cambridge, 1963.
[5] Sparrow, E. M., and Lee, L., “Analysis of flow Field and Impingement Heat/Mass Transfer Due to a Nonuniform Slot Jet”, Journal of Heat Transfer, vol. 97, 1975, pp. 191-197.
[6] Saad, N. R., Douglas, W. J. M., and Mujumdar, A. S., “Prediction of Heat Transfer Under an Axisymmetric Laminar Impinging Jet”. Industrial & Engineering Chemistry Fundamentals, Vol. 16, 1977, pp.148-154.
[7] Donaldson, C. D., Snedeker, R. S., and Margolis, D. P., “A Study of free Jet Turbulent Structure and Impingement Heat Transfer”, Journal of Fluid Mechanics, Vol. 45, 1971, pp. 477-512.
[8] Ali Khan, M. M., Hirata, M., Kasagi, N. , and Nishieati, N., “Heat Transfer Augmentation in an Axisymmetric Impinging Jet”, Seventh International Heat Transfer Conference, Vol.3, 1982, pp363-368.
[9] Goldstein, R. J., Behbahni, A. I., and Heppelmann, K. K., “Streamwise Distribution of the Recovery Factor and the Local Heat Transfer Coefficient to an Impinging Circular Air Jet”, International Journal of Heat and Mass Transfer, Vol. 29, 1986, pp. 1227-1235.
[10] Livingwood, J. N. B., and Hrycak, P., “Impingement Heat Transfer from Turbulent Air Stream Jets to Flat Plates – A Literature Review, NASA TM X-2778, 1973.
[11] Tzeng, P. Y., Soong, C. Y., and Hsieh, C. D., “Numerical Investigation of Heat Transfer Under Confined Impinging Turbulent Slot Jets,” Numerical Heat Transfer, Part A, Vol. 35, 1999, pp. 903-924.
[12] Chuang, S. H. and Wei, C. Y., “Computations for a Jet Impinging Obliquely on a Flat Surface,” International Journal of Numerical Methods in Fluids, Vol. 12, 1991, pp. 637-653.
[13] Baukal, C. E. and Gebhart, B., “A Review of Empirical Fame Impingement Heat Transfer Corrections”, International Journal of Heat and Fluid Flow, Vol. 17, 1996, pp. 386-396.
[14] Dong, L. L., Cheung, C. S., and Leung, C. W., “Heat Transfer from an Impinging Premixed Butane/Air a Slot Flame Jet,” International Journal of Heat and Mass Transfer, Vol. 45, 2002, pp. 979-992.
[15] Popiel, C. O., Meer, T. H., and Hoogendoorn, C. J., “Convective Heat Transfer on a Plate in an Impinging Round Hot Gas Jet of Low Reynolds Number,” International Journal of Heat and Mass Transfer, Vol. 23, 1980, pp. 1055-1068.
[16] Coeuret, F., “ Transient de material lors de l’impact normal de jets liquides circulaires immerges”, Chemical Engineering Science, Vol. 19, 1975, pp. 1257-1263.
[17] Milson, A. and Chigier, N. A., “Studies of Methane and Methane-Air Flames Impinging on a Cold Plate,” Combustion Flame, Vol. 21, 1973, pp. 295-305.
[18] Buhr, E., Haupt, R., and Kremer, H., Konvektiver Wameubergang Bei Verbrennung in der Grenzschicht, Westdeutscher Verlag GmbH, Opladen, 1976.
[19] van der Meer, T. H., “ Stagnation Point Heat Transfer from Turbulent Low Reynolds Number Jets and flame Jets”, Experiment of Thermal Fluid Science., Vol. 4, 1991, pp. 115-126.
[20] Klyuchnikov, M. K., Tsirkunov, Yu. M., and Petersburge, St., “The Propagation of Vertical Hot Jets in the Atmosphere,” Heat Transfer Research, Vol. 27, 1996, pp. 36-39.
[21] Kang, S.H. and Greif, R., “Flow and Heat Transfer to a Circular Cylinder with a Hot Impinging Air Jet,” International Journal of Heat and Mass Transfer, Vol. 35, 1992, pp. 2173-2183.
[22] Chung-Jen Tseng, Shih-Chun Peng and Chii-Fang Kao, “Effects of Gas Radiation on the Performance of a Hot Impinging Round Jet,” Accepted for publication, Transactions of the Aeronautical and Astronautical Society of the Republic of China, 2003.
[23] Lamont, P. J. and Hunt B. L., “ The Impingement of Underexpanded, Axisymmetric Jets on Perpendicular and Inclined Flat Plates,” Journal of Fluid Mechanism, Vol. 100, 1980, pp. 471-511.
[24] Kim, K. H. and Chang, K. S., “ Axismeetric Impingement of a Hot Jet on a Flat Plate: Equilibrium Flow Analysis of High-Temperature Air,” Shock Waves, Vol. 4, 1994, pp. 155-162.
[25] Chuech, S. G., Lai, M. C., and Feath, G. M., “Structure of Turbulent Sonic Underexpanded Free Jets,” AIAA Journal, Vol. 27, 1989, pp. 545-559.
[26] Modest, M., Radiative Heat Transfer, McGraw-Hill, New York, Chap. 15, 1993, pp. 541-571.
[27] Howell, J. R., Thermal Radiation Heat Transfer, Hemisphere, Washington, Chap. 13, 1992, pp. 597-681.
[28] Menart, J., “Radiative Transport in a Two-Dimensional Axisymmetric Thermal Plasma Using the S-N Discrete Ordinates Method on a Line-by-Line Basis,” Journal of Quantum Spectroscopy & Radiative Transfer, Vol. 67, 2000, pp. 273-291.
[29] Jendoubi, S., Lee H. S., and Kim T. K., “Discrete Ordinates Solutions for Radiatively Participating Media in Cylindrical Enclosure,” Journal of Thermophysics and Heat Transfer, Vol. 7, 1993, pp. 356-364.
[30] Carlson, B. G., and Lathrop, K. D., “Discrete-Ordinates Angular Quadrature of the Neutron Transport Equation”, Technical Information Series Report LASL-3186, Los Alamos Scientific Laboratory, 1965.
[31] Rodi, W., Influence of Buoyancy and Rotation on Equations for Turbulent Length Scale, Proceeding 2nd Symposium On Turbulent Shear Flows, 1979.
[32] Lauder, B. E., and Spalding, D. B., The Numerical Computation of Turbulent Flow, Computing Method In Applied Mechanics & Engineering, Vol. 3,1974, pp. 269.
[33] El Tahry, S. H., Equation for Compressible Reciprocating Engine Flows, AIAA Journal of Energy, Vol. 7, 1983, No. 4, pp. 345-353.
[34] Boussinesq, J., Theorie Anaytique de la Chaleur, Vol. 2, Gauthier-Villars, Paris, 1903.
[35] Patankar, S. V., Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington, D. C., Chap. 6, 1980.
[36] Patankar, S. V. and Spalding, D. B., “A Calculation Procedure for Heat, Mass and Momentum Transfer in Three Dimensional Parabolic Flows,” International Journal of Heat and Mass Transfer, Vol. 15, 1972, pp. 1787.
[37] Baughn, J. W. and Shimizu, S., “Heat Transfer Measurements from a Surface with Uniform Heat Flux and an Impinging Jet,” ASME Journal of Heat Transfer, Vol. 111, 1989, pp. 1096-1098.
[38] Thynell, S. T., “Treatment of Radiation Heat Transfer in Absorbing, Emitting, Scattering Two-Dimensional Cylindrical Media,” Numerical Heat Transfer, vol. 17, 1990, pp. 449- 472.
[39] Howell, J. R., Thermal Radiation Heat Transfer, Hemisphere, Washington, Chap. 13, 1992, pp. 597-681.
[40] Modest, M., Radiative Heat Transfer, McGraw-Hill, New York, Chap. 15, 1993, pp. 541-571.
[41] Craig, F. B., and Donald, R. H., Absorption and Scattering of Light by Small Particles, John Wiley and Sons, New York, Chap. 4, 1983, pp. 82-129.
指導教授 曾重仁(Chung-Jen Tseng) 審核日期 2004-2-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明