博碩士論文 89323128 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:49 、訪客IP:3.129.69.13
姓名 陳彥志(Yen-Chih Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 潔淨能源:高效率天然氣加氫燃燒技術與污染排放物定量量測
(Clean Energy: High Efficiency Natural Gas Combustion Technology with H2 Addition and Pollutant Emissions Measurements.)
相關論文
★ 蚶線形滑轉板轉子引擎設計與實作★ 實驗分析預混紊焰表面密度傳輸方程式及Bray-Moss-Libby模式
★ 低紊流強度預混焰之傳播及高紊流強度預混焰之熄滅★ 預混火焰與尾流交相干涉之實驗研究
★ 自由傳播預混焰與紊流尾流交互作用﹔火焰拉伸率和燃燒速率之量測★ 重粒子於泰勒庫頁提流場之偏好濃度與下沈速度實驗研究
★ 預混焰與紊流尾流交互作用時非定常應變率、曲率和膨脹率之定量量測★ 實驗方式產生之均勻等向性紊流場及其於兩相流之應用
★ 液態紊流噴流動能消散率場與微尺度間歇性 之定量量測★ 預混焰和紊流尾流交互作用:拉伸率與輻射熱損失效應量測
★ 四維質點影像測速技術與微尺度紊流定量量測★ 潔淨能源:超焓燃燒器研發
★ 小型熱再循環觸媒燃燒器之實驗研究及應用★ 預混紊流燃燒:碎形特性、當量比 和輻射熱損失效應
★ 預混甲烷紊焰拉伸量測,應用高速PIV★ 氫能利用:過焓觸媒熱電產生器之實作研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文針對貧油天然氣加氫預混紊流燃燒技術,提出一定量的實驗量測與分析研究。目前貧油預混紊流燃燒技術已應用至燃氣輪機和汽車引擎等領域,並證實可有效節省燃油、降低NOx和提高熱效率。但使用此燃燒技術有兩大問題須克服,因在接近天然氣貧油可燃極限時(當量比, equivalence ratio, 0.6),會導致火焰燃燒速度降低及失效點火增加的問題,這會使引擎效能降低,並產生嚴重空氣汙染。本實驗採取在甲烷(天然氣主要成分)中,添加少量氫氣的方式,來克服貧油燃燒的缺點,因為氫氣有甚為寬廣的可燃極限和甚高的層流燃燒速度(SL),可解決前述貧油預混燃燒問題。針對不同氫氣添加量(體積比10%、20%、30%),於一十字型預混紊流燃燒爐,應用一對自製離子探針,定量量測貧油預混焰受不同紊流強度(u')變化時之紊流燃燒速度(turbulent burning velocities, ST),並確認加氫後貧油天然氣預混紊流燃燒生成物之NOx和CO濃度的定量變化,進而深入評估天然氣加氫的效益,以瞭解並掌握貧油天然氣加氫燃燒的技術。
實驗結果證實,添加少量氫氣不僅可微幅擴展天然氣之貧油可燃極限,並使預混燃氣易於引燃,最重要的是,在固定值( =0.6或 =0.7)和 /SL下,加氫後之ST值大於未加氫之ST值,ST值隨加氫量之增加而增加。然而紊流不會無限制地線性增加紊流燃燒速度,當紊流強度(u')數倍於層流燃燒速度(laminar burning velocity, SL),繼續增加 /SL則ST/SL增加幅度明顯趨緩,此即所謂的彎折效應(bending effect),在 =0.6加氫10%的情況下,當u'/SL>20,ST/SL值不僅不再增加,甚至會降低。前述加氫後所有ST/SL結果可用一關係式來預測估算,此關係式由Shy et al. (2000c)首先提出,(ST/SL)/u'=C1Da^C2 ,其中Da為Damköhler數而C1和C2為實驗常數。在 =0.7和u'/SL=0~7之間,我們發現NOx濃度會隨著加氫量增加而增加,而CO之濃度則有相反趨勢,例如在 /SL=2時,加氫量0%、10%、20%到30%的[NOx]分別為98、136、158及188 ppm,這說明氫氣的加入會導致火焰溫度上升和thermal NOx的增加,顯示氫燃燒會有[NOx]太高的嚴重問題。在加氫量(10%~30%)固定時,[NOx]會先隨著u'/SL的增加而略為增加,當u'/SL>2時,[NOx]則隨u'/SL值之增加而遞減。在 =0.7和任何u'/SL值(0~7)的條件下,[CO]會隨加氫量之增加而減少(CO濃度介於40~55 ppm之間)。於 =0.7時,較佳的加氫量和u'/SL值應為不超過20%和介於4~10之間,則[NOx]會較低而ST/SL值可達6.5~12,本實驗結果可應用至天然氣火力電廠相關之燃燒研究。
摘要(英) This thesis investigates lean premixed turbulent combustion technology using natural gas with hydrogen addition. Lean premixed combustion has been applied to the areas of gas turbines and automobile engines and its advantages of saving fuel, reducing [NOx] emission, and increasing thermal efficiency were proved. However, when this technology is applied, there are two major problems: (1) a substantial decrease in flame speed and (2) the tremendous increase of the misfire probability, leading to poor engine outputs and heavy emissions. In this work, hydrogen as an additive is used to solve these aforementioned two problems because hydrogen has very low flammability limit and very high laminar burning velocity (SL). With three different hydrogen additions (volume fraction 10%, 20%, and 30%) in lean CH4/air mixtures, a series experiments are conducted in the cruciform burner where an intense near-isotropic turbulence can be generated via a pair of counter-rotating fans and perforated plates. Using a pair of self-designed ion-probe sensors, turbulent burning velocities (ST) are measured quantitatively. In addition, emission concentrations of NOx and CO are measured for the first time to understand combustion characteristics of lean natural gas with hydrogen addition.
The results indicate that a small hydrogen addition not only can slightly expand the lean flammability of CH4/air mixtures, but also can increase largely values of ST. At fixed values of (=0.6 or 0.7) and u’’/SL, values of ST increase with the amounts of hydrogen addition. However, turbulence cannot increase values of ST continuously. The slope of ST/SL vs. u’’/SL is found to bend towards the horizontal when values of u’’/SL are greater than about 4. This is the so-called bending effect, as also observed in burning CH4/air mixtures with hydrogen addition. All the present data can be correlated with an empirical relation with the form of (ST-SL)/u’’=C1Da^C2 , where C1, and C2 are experimental constant and Da is the Damköhler number. This empirical correlation is first proposed by Shy et al. (2000c) using the same methodology without hydrogen addition. Emission concentrations of [NOx]/[CO] increase/decrease with the amounts of hydrogen addition, respectively. For examples, at u’’/SL=2.0 and =0.7, values of [NOx] are respectively 98, 136, 158, and 188 ppm for 0%, 10%, 20%, and 30% hydrogen addition. This indicates that hydrogen combustion has a serious problem of NOx formation due to its very high flame temperature. Values of [CO] vary from 40 ppm to 55 ppm for any values of u’’/SL ranging from 0~7 and at =0.7. These experiments suggest that the hydrogen should not exceed 20% for premixed CH4/air turbulent combustion and values of u’’/SL should be controlled within the range of 4~10, such that lower [NOx] emissions and higher values of ST/SL range from 6.5 to 12 can be achieved. These results are relevant to the combustion performance of natural gas fire power plants.
關鍵字(中) ★ 添加氫氣
★ 貧油預混紊流燃燒
★ NOx
★ 紊流燃燒速度
關鍵字(英) ★ hydrogen addition
★ lean premixed combustion
★ turbulent burning velocity
★ NOx
論文目次 目 錄
摘要................................. I
英文摘要............................. II
誌謝................................. IV
目錄................................. V
圖表目錄............................. VII
符號說明............................. IX
第一章 前言.......................... 1
1.1 動機............................. 1
1.2 問題所在......................... 2
1.3 解決方案......................... 3
1.4 論文架構......................... 4
第二章 文獻回顧...................... 7
2.1 預混紊流燃燒理論................. 7
2.2 紊流燃燒速度..................... 9
2.3 氫能源之研究與應用............... 11
第三章 實驗裝置與量測方法............ 19
3.1 十字型預混紊流燃燒器............. 19
3.2 離子探針設備及訊號輸出........... 20
3.3 實驗流程......................... 22
3.4 氣體速度效應分析................. 24
3.5 壓力效應診測..................... 26
3.6 廢氣濃度量測..................... 27
第四章 結果與討論.................... 42
4.1 層流燃燒......................... 42
4.2 紊流燃燒......................... 43
4.3 紊流燃燒速度之預測............... 45
4.4 廢氣濃度......................... 48
第五章 結論與未來工作................ 59
5.1 結論............................. 59
5.2 未來工作......................... 60
參考文獻............................. 62
參考文獻 Abdel-Gayed, R., Bradley, D., and Lawes, M., “Turbulent Burning Velocities: A General Correlation in Terms of Straining rates”, Proc. R. Soc. Lond. A, Vol. 414, pp. 389-413 (1987).
Aldredge, R. C., Vaezi, V., and Ronney, P. D., “Premixed Flame Propagation in Turbulent Taylor-Couette Flow”, Combust. Flame, Vol. 115, pp. 395-405 (1998).
Bade Shrestha, S. O., and Karim, G. A., “Hydrogen as an Additive to Methane for Spark Ignition Engine Application”, Int. J. Hydrogen Energy, Vol. 24, pp. 577-586 (1999).
Bauer, C. G., and Forest, T. W., “Effect of Hydrogen Addition on the Performance of Methane-Fueled Vehicles. Part I: Effect on S.I. Engine”, Int. J. Hydrogen Energy, Vol. 26, pp. 55-70 (2001).
Bauer, C. G., and Forest, T. W., “Effect of Hydrogen Addition on the Performance of Methane-Fueled Vehicles. Part II: Driving Cycle Simulations”, Int. J. Hydrogen Energy, Vol. 26, pp. 71-90 (2001).
Bedat, B., and Cheng, R. K., “Experiment Study of Premixed Flames in Intense Isotropic Turbulence”, Combust. Flame, Vol. 100, pp. 485-494 (1995).
Bell, S. R., and Gupta, M., “Extension of the Lean Operating Limit for Natural Gas Fueling of a Spark Ignited Engine Using Hydrogen Blending”, Combust. Sci. Tech, Vol.. 123, pp. 23-48 (1997).
Bradley, D., “How Fast Can We Burn?”, Proc Combust. Inst, Vol.. 24, pp. 247-262 (1992).
Damköhler, G., “The Effect of Turbulence on the Flame Velocity in Gas mixtures”, Z. Elektrchem, Vol. 46, pp. 601-652 (1940) (Englisgh translation NASA Tech. Mem., Vol. 1112, 1947).
El-Sherif, S. A., “Control of Emissions by Gaseous Additives in Methane-Air and Carbon Monoxide-Air Flames”, Fuel, Vol. 79, pp. 567-575 (2000).
Gauducheau, J. L., Benet, B., and Searby, G. A., “A Numerical Study of Lean CH4/H2/Air Premixed Flames at High Pressure”, Combust. Sci. Tech, Vol.. 137, pp. 81-99 (1998).
Heywood, J. B., Internal Combustion Engine Fundamentals, McGraw-Hil, New York (1988).
Hoekstra, R. L., Blaarigan, P. V., and Mulligan, N., “NOx Emissions and Efficiency of Hydrogen, Natural Gas, and Hydrogen/Natural Gas Blended Fuels”, SAE Paper 961103, pp. 761-773 (1996).
Karbasi, M., and Wierzba, I., “The Effects of Hydrogen Addition on the Stability Limits of Methane Jet Diffusion Flames”, Int. J. Hydrogen Energy, Vol. 23, pp. 123-129 (1998).
Karim, G. A., Wierzba, I., and Al-Alousi, Y., “Methane-Hydrogen Mixtures as Fuels”, Int. J. Hydrogen Energy, Vol. 21, pp. 625-631 (1996).
Kido, H., Huang, S., Tanoue, H., and Nitta, T., “Improving The Combustion Performance of Lean Hydrocarbon Mixtures by Hydrogen Addition”, JSME Review., Vol. 15, pp. 165-167 (1994).
Nakahara, M., and Kido, H., “A Study of the Premixed Turbulent Combustion Mechanism Taking the Preferential Diffusion Effect into Consideration”, Memoirs of the Faculty of Engineering, Kyushu University, Vol. 58 No.2, pp. 55-82 (1998).
Peters, N., Turbulent Combustion, Cambridge University Press, Cambridge (2000).
Ronney, P. D., Haslam, B. D., and Rhys, N. O., “Front Propagation Rates in Randomly Stirred Media”, Phys. Rev. Lett., Vol. 74, pp. 3804-3807 (1995).
Shy, S. S., Jang, R. H., and Ronney, P. D., “Laboratory Simulation of Flamelet Distributed Models for Premixed Turbulent Combustion Using Aqueous Autocatalytic Reactions”, Combust. Sci. Tech., Vol. 113-114, pp. 329-350 (1996).
Shy, S. S., I, W. K., and Lin, M. L., “A New Cruciform Burner and Its Turbulence Measurements for Premixed Turbulent Combustion Study“, Experimental Thermal and Fluid Sci., Vol. 20, pp. 105-114 (2000a).
Shy, S. S., Lin, W. J., and Peng, K. Z., “High-Intensity Turbulent Premixed Combustion: General Correlations of Turbulent Burning Velocities in a New Cruciform Burner”, Proc. Combust. Inst., Vol. 28, pp. 561-568 (2000b).
Shy, S. S., Lin, W. J., and Wei, J. C., “An Experimental Correlation of Turbulent Burning Velocities for Premixed Turbulent Methane-Air Combustion”, Proc. R. Soc. Lond. A, Vol. 456, pp. 1997-2019 (2000c).
Swain, M. R., Yusuf, M. J., Dulger, Z., and Swain, M. N., “The Effect of Hydrogen Addition on Natural Gas Engine Operation”, SAE Paper 932275, pp 1592-1600 (1993).
Tseng, C. J., “Effects of Hydrogen Addition on Methane Combustion in a Porous Medium Burner”, Int. J. Hydrogen Energy, Vol. 27, pp. 699-707 (2002).
Turns, S. R., An Introduction to Combustion, 2nd Edition, McGraw-Hill, New York (2000).
Uykur, C., Henshaw, P. F., Ting, D. S.-K., and Barron, R. M., “Effects of Addition of Electrolysis Products on Methane/Air Premixed Laminar Combustion”, Int. J. Hydrogen Energy, Vol. 26, pp. 265-273 (2001).
Vagelopoulos, C. M., Egolfopoulos, F. N., and Law, C. K., “Further Considerations on the Determination of Laminar Flame Speeds with the Counterflow Twin-flame Technique”, Proc. Combust. Inst., Vol. 25, pp. 1341-1347 (1994).
Veziroglu, T. N., “Quarter Century of Hydrogen Movement 1974-2000”, Int. J. Hydrogen Energy, Vol. 25, pp. 1143-1150 (2000).
Videto, B. D., and Santavicca, D. A., “A Turbulent Flow System for Studying Turbulent Combustion Processes”, Combust. Sci. Tech., Vol. 76, pp. 159-164 (1991).
Williams, F. A., Combustion Theory, 2nd Edition, Addison-Wesley, Redwood City (1985).
Yu, G., Law, C. K., and Wu, C. K., “Laminar Flame Speed of Hydrocarbon + Air Mixtures with Hydrogen Addition”, Combust. Flame, Vol. 63, pp. 339-347 (1986).
尹偉光 “預混紊流燃燒:風扇擾動式燃燒器之冷流場量測及其未來發展”,國立中央大學機械工程研究所,碩士論文(1996)。
林孟良 “氣態預混紊流燃燒速度量測於一近似均勻等向性紊流場”,國立中央大學機械工程研究所,碩士論文(1998)。
林文基 “甲烷與丙烷預混紊流燃燒速度的量測”,國立中央大學機械工程研究所,碩士論文(1999)。
魏建樟 “應用雷射斷層攝影術探討預混紊焰傳播”,國立中央大學機械工程研究所,碩士論文(1999)。
彭光榮 “低紊流強度預混焰之傳播及高紊流強度預混焰之熄滅”,國立中央大學機械工程研究所,碩士論文(2000)。
指導教授 施聖洋(S. S. Shy) 審核日期 2002-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明