博碩士論文 89343008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:18.226.17.86
姓名 黃俊源(Jiunn-Yuan Huang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 反應爐壓力槽鋼材疲勞行為研究
(Fatigue Behavior of Reactor Pressure Vessel Steels)
相關論文
★ 三次元量床之虛擬儀器教學與訓練系統之設計與開發★ 駕駛模擬器技術開發及其在駕駛行為研究之應用
★ 電源模組老化因子與加速試驗模型之研究★ 應用駕駛模擬器探討語音防撞警示系統 對駕駛行為之影響
★ 遠距健康監測與復健系統之開發與研究★ 藥柱低週疲勞特性與壽限評估模式之研究
★ 非接觸式電子經緯儀電腦模擬教學系統之研究★ 適應性巡航控制系統對於駕駛績效影響之研究
★ 車輛零組件路況模擬系統之開發研究★ 應用殘障駕駛模擬器探討失衡路況對人體重心影響之研究
★ 聚縮醛(POM)機械性質之射出成型條件最佳化研究★ 駕駛模擬儀之開發驗證及應用於駕駛疲勞之研究
★ 即時眼部狀態偵測系統之研究★ 短玻璃纖維強化聚縮醛射出成型條件最佳化與機械性質之研究
★ 手推輪椅虛擬實境系統開發之研究★ 應用駕駛績效預測車輛碰撞風險之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究探討反應爐壓力槽(Reactor Pressure Vessel, RPV) SA533B1鋼材之疲勞裂縫起始及成長機構。測試材料包括四種不同硫含量(0.0062 wt% ~ 0.035 wt%)之SA533B1鋼材,進行室溫及高溫下之高週、低週疲勞及疲勞裂縫成長速率測試。疲勞裂縫長度分別以交流電位降法及開口位移計量測,以比較不同量測技術之差異,並以應變片量測疲勞裂縫成長之裂縫閉合程度,瞭解裂縫閉合現象對疲勞裂縫成長之影響。同時,藉掃瞄式電子顯微鏡(SEM)及穿透式電子顯微鏡(TEM)觀察鋼材經疲勞測試後之微觀組織變化,以探討疲勞裂縫起始及成長模式,提供RPV鋼材疲勞壽命評估之依據。
實驗結果顯示,硫含量高低對室溫SA533B1鋼材高週疲勞限無顯著影響,疲勞限約為650 MPa。高溫(300?C)高週疲勞限及疲勞壽命較室溫者略高,尤以硫含量低者(0.006 wt% S)疲勞限最高,達702 MPa。低週疲勞測試方面,室溫及高溫之鋼材低週疲勞壽命與硫含量高低無明顯關聯。低週疲勞壽命可藉應變-壽命經驗式及SWT關係式預估之。另外,鋼材中之Al、S、Ca、Mn及O等元素形成之夾雜物(Inclusion)對高週疲勞壽命有顯著影響;但低週疲勞壽命較不受夾雜物影響。高週疲勞裂縫常起始於夾雜物處,300℃時裂縫甚至起始於試片內部夾雜物處。此外,SA533B1鋼材於300℃發生之動態應變時效及伴隨高溫塑性變形之晶粒細化效應有助於鋼材強度提升,對高週及低週疲勞壽命均有助益。但相反地,高溫塑性變形促使強迫固溶於基地的碳化物析出,造成鋼材強度下降,對高週及低週疲勞壽命卻有損害。晶粒細化與碳化物析出兩機制彼此競爭結果,晶粒細化效應較顯著。因此,300?C高週與低週之抗疲勞性較室溫略佳,且經300?C疲勞測試鋼材之室溫硬度值明顯呈上升現象。
疲勞裂縫成長方面,藉交流電位降量測法可準確量測高溫疲勞裂縫長度。研究結果發現,不同硫含量鋼材疲勞裂縫成長速率均可由Paris Law表示成da/dN (mm/cycle) = 1.98×10-8×(?K)2.54 (MPa );和硫含量及測試溫度(室溫、150℃及300oC)無明顯關係,但當硫化物方向與疲勞裂縫成長方向平行時,裂縫成長速率較快。以應變片量測裂縫閉合發現,應力比下降至R = 0.13之受力情況,才出現裂縫閉合現象,因此,R = 0.2之裂縫成長速率不需修正。另外,裂縫閉合程度與負荷歷程及裂縫尖端塑性區大小有密切關係,裂縫閉合程度隨著裂縫尖端塑性區重疊而趨嚴重。
穿透式電子顯微鏡分析結果證明,疲勞累積傷害與次晶粒間之方位差無明確關聯性,而高溫高週及低週疲勞測試後晶粒寬度變小,碳化物沿著晶界、次晶界析出,與SEM觀察結果一致。
綜合而言,SA533B1鋼材雜質含量對高週疲勞壽命有顯著影響,若電廠建廠之初能提高鋼材純度,減少雜質含量,將有助於管嘴附近高週疲勞壽命提昇。由本研究結果得知,高週疲勞與低週疲勞之裂縫起始機構不盡相同,故以低週疲勞數據之應變振幅乘以楊氏模數轉換而得之S-N曲線,無法精確預測高週疲勞S-N曲線。另外,當雜質方向與疲勞裂縫生長方向平行時,裂縫生長會加速,電廠尤需注意監控。
摘要(英) High-cycle, low-cycle fatigue tests and fatigue crack propagation measurements were conducted on SA533B1 steels, reactor pressure vessel (RPV) steels, with four levels of sulfur content (0.0062 wt%~ 0.035 wt%) at room temperature and 300 ℃. Efforts were made to study the effects of sulfur content on the fatigue degradation of RPV steels. Fractographic and microstructural examinations by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were performed to investigate the fatigue crack initiation and propagation mechanism. To make a comparison of different crack measurement techniques, fatigue crack length measurements were concurrently taken on the same specimen by an alternating current potential drop technique and a crack opening displcement gauge. Fatigue crack opening levels were also measured to characterize the fatigue crack closure effect on fatigue crack growth behavior.
The results of high-cycle fatigue (HCF) limit were observed to be ~650 MPa, around the yield strength of SA533B1 steel, and showed little or no dependence on sulfur content at room temperature. At 300℃, the fatigue limits were slightly higher than those tested at room temperature, notably for the steel with a sulfur content 0.006 wt% whose fatigue limit at 300℃ was up to 702 MPa. The low-cycle fatigue (LCF) limit showed little or no dependence on sulfur content, but significantly depended on the test temperature. Fatigue life could be predicted either by means of the strain-life equation or the SWT (Smith, Watson, and Topper) parameter for specimens under low-cycle fatigue conditions. The strain-life equation for SA533B1 steel in air was irrespective of the sulfur content, but dependent on the test temperature. HCF life was significantly affected by the inclusions which are composed of O, Al, S, Ca, and Mn. The inclusions were randomly distributed on the surface or in the interior of the specimen. Fractographic examination results suggested that inclusions near the specimen surface served as the crack initiation site for a majority of the fatigued specimens tested at room temperature. For those tested at 300℃, some cracks were identified to initiate around the inclusions in the interior of the fatigued specimens. However, the effects of inclusion on the LCF are less significant than HCF. No LCF specimens were observed to initiate at/around the inclusions.
The fatigue resistance of SA533B1 steel subjected to HCF and LCF tests at 300℃ was improved by the combined effects of dynamic strain aging (DSA) and grain size reduction. DSA and grain size reduction increase the steel strength, accordingly improve the HCF and LCF limits at 300℃. But, concurrently, the precipitation of carbides/nitrides in SA533B1 steel leads to a decrease in the steel strength. The grain size reduction and the precipitation compete with each other. The grain size reduction is dominant and the net effect is reflected in an increase in hardness value.
The crack growth rate measurements for steels of different sulfur contents tested at room temperature and 300℃ can be characterized by the same material constants C = 1.98*10-8 and m = 2.54 for Paris law, where da/dN is in mm/cycle and ?K in MPa . It implies that fatigue crack growth rate has little or no dependence on sulfur content and test temperatures (25℃, 150℃ and 300℃). But fatigue crack growth rate becomes faster, when crack propagation runs parallel to the sulfide orientation. Fatigue crack closure became evident till the stress ratio (R value) was decreased to the values smaller than 0.13. Thus, for the tests at the stress ratio of R = 0.2, it is not necessary to calibrate the ?K value. The results of crack opening measurement show that the levels of crack closure significantly depend on the loading history and plastic zone size ahead of crack tip. The phenomenon of crack closure was observed to be more significant for the specimens with a through crack than those with a surface crack.
Smaller subgrains and a greater number of precipitates were identified with the specimens tested at 300?C by SEM and TEM examinations. No clear relationship was found between fatigue damage and the mis-orientation changes of cell walls (or subgrain boundaries) in the fatigued samples of SA533B1 steel.
關鍵字(中) ★ SA533B1
★ 硫含量
★ 交流電位降
★ 裂縫閉合
★ 低週疲勞
★ 高週疲勞
★ 動態應變時效
關鍵字(英) ★ dynamic strain aging
★ sulfur
★ SA533B1
★ crack closure
★ ACPD
★ low-cycle fatigue
★ high-cycle fatigue
論文目次 誌 謝 I
摘 要 II
符號說明 1
第一章 前言 3
1-1 研究背景及目的 3
1-2 本論文架構 4
第二章 文獻回顧與理論說明 7
2.1. SA533B1鋼材特性及相關研究 7
2.2 應力-壽命疲勞曲線(S-N Curve) [23-24] 8
2.3應變-壽命疲勞曲線(ε-N Curve) [23-24] 10
2.4 疲勞裂縫成長[23-24] 11
2.5 疲勞裂縫閉合 13
2.6動態應變時效(Dynamic Strain Aging, DSA)[16, 17, 33-36] 14
2.7疲勞裂縫長度量測法 15
2.7.1 COD量測法[39-40] 16
2.7.2 DCPD量測法[41-43] 17
2.7.3 ACPD量測法[44-46] 17
第三章 實驗步驟 18
3.1鋼材煉製及組成鑑定 18
3.2 拉伸測試 18
3.3 高週疲勞測試 19
3.4低週疲勞測試 19
3.5 緊緻拉伸(Compact Tension, CT)試片疲勞裂縫量測 20
3.6 疲勞裂縫閉合量測 22
3.7 破斷試片觀察 22
3.8 金相試片觀察 23
3.9 穿透式電子顯微鏡(TEM)觀察 23
3.10 顯微硬度(Micro-Hardness)試驗量測 23
3.11 晶粒尺寸及析出物面積比率計算 23
第四章 結果與討論 25
4.1 拉伸測試結果 25
4.2 高週疲勞測試結果 26
4.3 低週疲勞測試結果 29
4.4 疲勞裂縫成長速率測試結果 34
4.5 疲勞裂縫閉合實驗量測結果 36
4.6 穿透式電子顯微鏡觀察結果 38
4.7 掃瞄式電子顯微鏡觀察結果 40
第五章 結論 42
第六章 未來研究方向及建議 44
參考文獻 45
作者簡歷 117
參考文獻 (A)期刊論文
1. P. K. Liaw, H. Wang, L. Jiang, B. Yang, J. Y. Huang, R. C. Kuo, and J. G. Huang, “Thermography Detection of Fatigue Damage of Pressure Vessel Steels at 1,000 Hz and 20 Hz”, Scripta Materialia, Vol. 42, 2000, pp. 389-395.
2. J. Y. Huang, R. Z. Li, K. F. Chien, R. C. Kuo, P. K. Liaw, B. Yang, and J. G. Huang, “Fatigue Behavior of SA533-B1 Steels”, ASTM Fatigue and Fracture Mechanics: 32nd Volume, STP 1406, 2001, pp.105-121.
3. B. Yang, P. K. Liaw, H. Wang, L. Jiang, J. Y. Huang, R. C. Kuo, and J. G. Huang, “Thermography Investigation of the Fatigue Behavior of Reactor Pressure Vessel (RPV) Steels”, Materials Science and Engineering, A314, 2001, pp. 131-139.
4. C. Y. Chen, J. Y. Huang, J. J. Yeh, R. C. Kuo, J. R. Hwang and J. G. Huang, “Microstructural Evaluation of Fatigue Damage in SA533-B1 and Type 316L Stainless Steels”, Journal of Materials Science. Vol. 38, 2003, pp. 817-822.
5. J. Y. Huang, J. R. Hwang, J. J. Yeh, C. Y. Chen, and R. C. Kuo, “On the Low Cycle Fatigue Resistance of SA533 Steels” Materials Science and Technology, in press.
6. J. Y. Huang, J. R. Hwang, J. J. Yeh, C. Y. Chen, R. C. Kuo, and J. G. Huang, “Dynamic Strain Aging and Grain Size Reduction Effects on the Fatigue Resistance of SA533 Steels” Journal of Nuclear Materials, in revision.
7. 黃俊源,李仁志,簡艮夆,郭榮卿等,“反應爐壓力槽鋼材疲勞壽限評估”,核研季刊, 第36期, 第34-45頁,民國89年7月。
8. 李後龍,葉基榮,黃俊源,“SS316L不銹鋼高週疲勞及音洩量測研究”,檢測科技,第十九卷,第三期,第84-90頁,民國90年5-6月。
9. 黃俊源,葉基榮,簡艮夆,郭榮卿等,“反應爐壓力槽鋼材疲勞行為偵測與評估”,台電工程月刊, 第639期, 第78-96頁, 民國90年11月。
10. 葉基榮,黃俊源,宋游楠崑,郭榮卿等,"SS316L不銹鋼在高溫高壓水媒中之低週疲勞行為”,防蝕工程季刊發表中
(B)研討會論文
1. J. Y. Huang, C. Y. Chen, K. F. Chien, R. C. Kuo, L. Jiang, B. Yang, H. Wang, P. K. Liaw, and J. G. Huang, “High-cycle Fatigue Behavior of SA533-B1 Steels”, American Society for Testing and Materials (ASTM), 31st National Symposium on Fatigue and Fracture Mechanics, Cleveland, Ohio, June 21-24, 1999.
2. J. Y. Huang, C. Y. Chen, K. F. Chien, R. C. Kuo, P. K. Liaw, and J. G. Huang, “Fatigue Behavior of Reactor Pressure Vessel Steels”, Julia Weertman Symposium, The Minerals, Metals, and Materials Society (TMS), Y. W. Chung, D. Dunand, P. K. Liaw and G. Olson, eds., Fall Meeting, October 31-November 4, 1999, pp. 373-384.
3. R. Z. Li, J. Y. Huang, J. J. Yeh, R. C. Kuo, et al., “ Life Prediction of Reactor Pressure Vessels under Cyclic Loading”, Prof. Campbell Laird Symposium, The TMS Annual Meeting, Nashville, TN, March 13-16, 2000.
4. B. Yang, P. K. Liaw, H. Wang, L. Jiang, J. Y. Huang, R. C. Kuo, and J. G. Huang, “Temperature Evolution and Fatigue Damage of Reactor Pressure Vessel (RPV) Steels”, TMS Meeting, 184 Thorn Hill Road, Warrendale, PA 15086-7514, pp. 25-36, 2000.
5. H. L. Lee, J. Y. Huang, J. J. Yeh, “High-Cycle Fatigue Cracking Behaviors of Low Alloy Steel SA533B1 and Type 316L Stainless Steel and Acoustic Emission Measurements”, 3rd International Conference on NDE in Relation to Structural Integrity for Nuclear and Pressurized Components, Seville, Spain, Nov. 14-16, 2001.
6. J. J. Yeh, J. Y. Huang, R. C. Kuo, “High-cycle fatigue behavior of type 316L Stainless Steel”, International Symposium on Experimental Mechanics (ISEM), Taipei Grand Hotel, Taiwan, Dec. 28~30, 2002.
7. 李後龍, 黃俊源, “SA533B1鋼材高週疲勞行為與音射量測研究”, 第七屆破壞科學研討會,墾丁福華飯店,民國91年3月 22-23日。
8. 黃俊源, 葉基榮, 陳長盈,郭榮卿,黃振國等, "動態應變時效和晶粒細化效應對SA533鋼材高週疲勞行為研究”, 90台電/核究所委託合作研發成果研討會, 91年6月14日, 核究所。
9. 黃俊仁,馮君平,許育銓,黃俊源,”反應器壓力槽疲勞壽限評估模式之研究” 第十一屆國防科技研討會,中正理工學院,民國91年7月25日。
10. 葉基榮,黃俊源,宋游楠崑,郭榮卿等,"SS316L不銹鋼在高溫高壓水媒中之低週疲勞行為”,防蝕工程學會,民國91年8月22日~23日,台中東勢林場。
11. 黃俊仁,陳奎澧,馮君平,黃俊源,郭榮卿等,“SA533B1壓力槽鋼材之疲勞裂縫閉合與裂縫成長研究”, 第十九屆機械工程研討會, 民國91年11月29日~30日。
(C)其他
1. 台電/核研所核能發電廠技術發展專業”反應爐壓力槽鋼材疲勞行為偵測與評估第一次進度報告”,民國87年9月。
2. 台電/核研所核能發電廠技術發展專業”反應爐壓力槽鋼材疲勞行為偵測與評估第一次期中報告”,民國88年3月。
3. 台電/核研所核能發電廠技術發展專業”反應爐壓力槽鋼材疲勞行為偵測與評估第二次進度報告”,民國88年9月。
4. 台電/核研所核能發電廠技術發展專業”反應爐壓力槽鋼材疲勞行為偵測與評估第二次期中報告”,民國89年3月。
5. 台電/核研所核能發電廠技術發展專業”反應爐壓力槽鋼材疲勞行為偵測與評估第三次進度報告”,民國89年9月。
6. 台電/核研所核能發電廠技術發展專業”反應爐壓力槽鋼材疲勞行為偵測與評估期末報告”,民國90年3月。
7. 葉基榮,黃俊源,郭榮卿,“316L不銹鋼高週疲勞特性研究”, INER-T2492,民國87年12月。
8. 葉基榮,黃俊源,郭榮卿,“SS316L不銹鋼組件鋼材及SA533B1壓力槽鋼材疲勞行為與壽限評估研究”, INER-T2697, 民國90年2月。
9. 黃俊源,簡艮夆,郭榮卿等," SA533B1壓力槽鋼材疲勞行為研究”,INER-2066,民國90年10月。
10. 陳仁宏,黃俊源,陳國衍,俞君俠,簡艮夆,廖文珍,黃俊雄,徐鴻發,“核四廠一號機反應爐第一層基座焊道267龜裂肇因分析報告” INER-T2910,民國91年11月。
11. 陳國衍,黃俊源,葉基榮,郭榮卿,“SA533B1壓力槽鋼材受循環負載裂縫成長與壽限評估之數值分析研究”,INER-T2941,民國92年1月。
指導教授 黃俊仁(Jiun-Ren Hwang) 審核日期 2003-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明