博碩士論文 90323008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:95 、訪客IP:3.147.46.183
姓名 曾信傑(Hsin-Chieh Tseng)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 電子構裝用無鉛銲錫之低週疲勞行為研究
(Low-Cycle Fatigue Behavior and Mechanisms of Lead-Free Solders)
相關論文
★ 晶圓針測參數實驗與模擬分析★ 車銑複合加工機床面結構最佳化設計
★ 精密空調冷凝器軸流風扇葉片結構分析★ 第四代雙倍資料率同步動態隨機存取記憶體連接器應力與最佳化分析
★ PCB電性測試針盤最佳鑽孔加工條件分析★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究
★ 合金元素(錳與鋁)與球磨處理對Mg2Ni型儲氫合金放電容量與循環壽命之影響★ 鍶改良劑、旋壓成型及熱處理對A356鋁合金磨耗腐蝕性質之影響
★ 核電廠元件疲勞壽命模擬分析★ 可撓式OLED封裝薄膜和ITO薄膜彎曲行為分析
★ MOCVD玻璃承載盤溫度場分析★ 不同環境下之沃斯回火球墨鑄鐵疲勞裂縫成長行為
★ 不同環境下之Custom 450不銹鋼腐蝕疲勞性質研究★ AISI 347不銹鋼腐蝕疲勞行為
★ 環境因素對沃斯回火球墨鑄鐵高週疲勞之影響★ AISI 347不銹鋼在不同應力比及頻率下之腐蝕疲勞行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主旨在探討Sn-3.5Ag與Sn-3.5Ag-0.5Cu兩款電子構裝用無鉛銲錫之機械性質及低週疲勞行為,並與過去在工業上較常使用的Sn-37Pb銲錫做比較,以了解未來運用無鉛銲錫替代傳統含鉛銲錫之可行性。此外,亦利用掃描式電子顯微鏡(SEM)觀察表面裂縫與疲勞破斷面,以了解此兩款無鉛銲錫之疲勞破裂機制。
實驗結果顯示,在10-2、10-3與10-4 s-1三種不同應變速率的拉伸測試下,基本上Sn-3.5Ag-0.5Cu合金有最高的抗拉強度,Sn-3.5Ag合金次之,Sn-37Pb合金最低,且三種銲錫的抗拉強度皆會隨應變速率增加而提昇。而在延伸率與真實破裂延性方面,可以發現Sn-37Pb合金在兩較慢應變速率下,會展現出超塑性之特性,但對於兩款無鉛銲錫而言,延伸率與真實破裂延性反而會隨著應變速率下降而減少,主要是由於潛變機制引入所造成。從應變比為-1、應變速率為10-3 s-1的低週疲勞實驗得知,基本上無鉛銲錫比傳統銲錫有較高的疲勞阻抗,其中Sn-3.5Ag-0.5Cu合金的疲勞強度比Sn-3.5Ag合金高,主要是與其具有較高強度與抗潛變特性相關。Coffin-Manson關係式,對上述三種銲錫之低週疲勞行為皆有不錯的描述性,而利用延性修正的Coffin-Manson關係式,對此兩款無鉛銲錫的疲勞壽命評估,也有不錯的整合性。
由SEM觀察得知,細小的表面裂縫容易於富錫樹枝狀結構與共晶組織兩相交界處起始,主要是因兩相的強度不同,於循環受力後容易產生晶界差階而衍生應力集中所造成。而裂縫的成長與相互連結過程,主要沿著富錫樹枝狀結構與共晶組織交界處,伴隨穿過共晶組織相之穿沿晶混合模式進行,一旦連結成大裂縫並向試棒內部成長,便會導致試棒快速斷裂而失效。
摘要(英) The purpose of this study is to investigate the mechanical properties and low-cycle fatigue (LCF) behaviors of Sn-3.5Ag and Sn-3.5Ag-0.5Cu lead-free solders. These properties were compared with those of conventional Sn-37Pb solder to evaluate the feasibility of using lead-free solders to replace the Pb-contained solders in the future. Fractography analyses with scanning electronic microscopy (SEM) were conducted to determine fatigue fracture mechanisms of these two lead-free solders.
Experimental results show that the tensile strength was increased with increasing strain rate from 10-4 to 10-2 s-1 for all three types of solder alloys. Sn-3.5Ag-0.5Cu alloy had the highest tensile strength followed by Sn-3.5Ag alloy, and then the Sn-37Pb alloy. Due to the influence of a creep mechanism during tensile deformation processes, the elongation and true fracture ductility of lead-free solders were decreased with a decrease in strain rate. However, the Sn-37Pb alloy exhibited a superplastic behavior when tested at lower strain rates. Under a strain ratio of R=-1 and a strain rate of 10-3 s-1, it could be found that the lead-free solders usually had better LCF resistance than the traditional Sn-37Pb solder. Because of its greater strength and creep resistance, Sn-3.5Ag-0.5Cu alloy exhibited longer fatigue life than Sn-3.5Ag. The LCF behavior of all solders generally followed the Coffin-Manson relationship. The fatigue life was dominated by the true fracture ductility and could be well described by the ductility-modified Coffin-Manson relationship.
From SEM observations, it can be found that, due to the difference of strength between the dendrite and eutectic phases, steps were generated along the boundaries between these two phases. These steps caused formation of surface microcracks as a result of stress concentration effects. The surface microcracks generally propagated in a mixed mode (intergranularly and transgranularly) and linked up to form large cracks. The intergranular path was along the dendrite boundaries and the transgranular path was through the eutectic phases. The large cracks would eventually grow into the specimen body and lead to final failure.
關鍵字(中) ★ 無鉛銲錫
★ 低週疲勞
關鍵字(英) ★  Low-Cycle Fatigue
★ Lead-Free Solder
★ Sn-3.5Ag
★ Coffin-Manson Relationship
★ Ductility
★ Sn-3.5Ag-0.5Cu
論文目次 List of Tables V
List of Figures. VI
第一章 簡介 1
1-1 研究背景 1
1-2 鉛的毒性及污染 2
1-3 銲錫的相關立法 3
1-4 無鉛銲錫發展與基本合金分類 4
1-4-1 Sn-Ag系合金 5
1-4-2 Sn-Bi系合金 6
1-4-3 Sn-Zn系合金 7
1-4-4 Sn-Cu系合金 8
1-4-5 Sn-In系合金 8
1-5 銲錫的疲勞與潛變 9
1-6 疲勞壽命評估模式 11
1-7 傳統銲錫簡介及相關文獻回顧 18
1-8 本研究所選用之無鉛銲材簡介及相關文獻回顧 21
1-9 研究目的 24
第二章 實驗方法與程序 26
2-1 材料及試片製作 26
2-2 拉伸試驗 26
2-3 低週疲勞試驗 26
2-4 金相、表面裂縫與破斷面觀察 27
第三章 結果與討論 30
3-1 微結構 30
3-2 拉伸性質 31
3-3 低週疲勞 34
3-3-1 循環應力反應與遲滯環 34
3-3-2 應變振幅-壽命圖 (e-N curves) 35
3-3-3 疲勞壽命整合模式 38
3-3-4 超塑性對疲勞壽命的影響 39
3-3-5 應變速率對疲勞壽命的影響 40
3-4 破裂機制 42
第四章 結論 44
參考文獻 45
Tables 52
Figures 56
參考文獻 [1] W. J. Plumbridge, “Review: Solder in Electronics,” Journal of Materials Science, Vol. 31, 1996, pp. 2501-2514.
[2] M. McCormack and S. Jin, “New Lead-Free, Sn-Zn-In Solder Alloys,” Journal of Electronic Materials, Vol. 23, 1994, pp. 687-690.
[3] J. H. Vincent and G. Humpston, “Lead-Free Solders for Electronic Assembly,” GEC Journal of Research, Vol. 11, 1994, pp. 76-89.
[4] 馮克林, “檢談電子元件銲錫可靠度,” 工業材料, 第124期, 1997年, pp. 93-99.
[5] 菅沼 克昭, 鉛付技術, 工業調查會, 日本, 2001. (日文)
[6] S. K. Kang and A. K. Sarkhel, “Lead (Pb)-Free Solders for Electronic Packaging,” Journal of Electronic Materials, Vol. 23, 1994, pp. 701-707.
[7] M. McCormack and S. Jin, “New Lead-Free Solders,” Journal of Electronic Materials, Vol. 23, 1994, pp. 635-640.
[8] P. T. Vianco and D. R. Frear, “Issues in the Replacement of Lead-Bearing Solders,” JOM, Vol. 45, 1993, pp. 14-19.
[9] P. T. Vianco, “Solder Alloys: A Look at the Past, Present, and Future,” Welding Journal, Vol. 76, 1994, pp. 45-49.
[10] 詹益淇、莊東漢, “無鉛銲錫的回顧與最新發展,” 電子月刊, 第六卷, 第三期, 2000年, pp. 226-237.
[11] B. Trumble, “Get the Lead out,” IEEE Spectrum, Vol. 35, 1998, pp. 55-60.
[12] E. P. Wood and K. L. Nimmo, “In Search of New Lead-Free Electronic Solders,” Journal of Electronic Materials, Vol. 23, 1994, pp. 709-713.
[13] M. Abtew and G. Selvaduray, “Lead-Free Solders in Microelectronics,” Materials Science and Engineering R, Vol. 27, 2000, pp. 95-141.
[14] 張淑如, “鉛對人體的危害,” 勞工安全衛生簡訊, 第12期, 1995年, pp. 17-18.
[15] A. Z. Miric and A. Grusd, “Lead-Free Alloys,” Soldering and Surface Mount Technology, Vol. 10, 1998, pp. 19-25.
[16] M. Judd and K. Brindley, Soldering in Electronics Assembly, 2nd ed., Newnes, Oxford, 1999, pp. 83-84.
[17] Environmental Protection Agency, Comprehensive Review of Lead in the Environment under TSCA, 56FR 22096-98, 1991.
[18] IPC Roadmap for Lead-Free Electronic Assemblies, 2nd Draft, IPC, Northbrook, IL, November, 1999.
[19] IPC Roadmap: A Guide for Assembly of Lead-Free Electronics, 4th Draft, IPC, Northbrook, IL, June, 2000.
[20] 游善博, “錫鋅系無鉛銲錫與銅基材間附著性與界面反應之研究,” 國立成功大學材料科學及工程學系博士論文, 2000.
[21] Alloy Phase Diagrams, ASM Handbook, Vol. 3, ASM International, Materials Park, OH, 1992, pp. 2.1-2.25.
[22] M. McCormack and S. Jin, “Improved Mechanical Properties in New Pb-Free Solder Alloys,” Journal of Electronic Materials, Vol. 23, 1994, pp. 715-720.
[23] M. McCormack, S. Jin, G. W. Kammlott, and H. S. Chen, “New Pb-Free Solder Alloy with Superior Mechanical Properties,” Applied Physics Letters, Vol. 63, 1993, pp. 15-17.
[24] K. Suganuma, S. H. Huh, K. Kim, H. Nakase, and Y. Nakamura, “Effect of Ag Content on Properties of Sn-Ag Binary Alloy Solder,” Materials Transactions, JIM, Vol. 42, 2001, pp. 286-291.
[25] W. Yang, L. E. Feltion, and R. W. Messler “The Effect of Soldering Process Variables on the Microstructure and Mechanical Properties of Eutectic Sn-Ag/Cu Solder Joints,” Journal of Electronic Materials, Vol. 24, 1995, pp. 1465-1472.
[26] Y. Kariya and M. Otsuka, “Effect of Bismuth on the Isothermal Fatigue Properties of Sn-3.5 mass% Ag Solder Alloy,” Journal of Electronic Materials, Vol. 27, 1998, pp. 866-870.
[27] Y. Kariya and M. Otsuka, “Mechanical Fatigue Characteristics of Sn-3.5Ag-X (X=Bi, Cu, Zn, and In) Solder Alloys,” Journal of Electronic Materials, Vol. 27, 1998, pp. 1229-1235.
[28] H. Kabassis, J. W. Rutter, and W. C. Winegard, “Phase Relationships in Bi-In-Sn Alloy System,” Materials Science and Technology, Vol. 2, 1986, pp. 985-988.
[29] N. C. Lee, “Getting Ready for Lead-Free Solders,” Soldering and Surface Mount Technology, Vol. 9, 1997, pp. 65-69.
[30] Z. Mei and J. W. Morris, Jr., “Characterization of Eutectic Sn-Bi Solder Joints,” Journal of Electronic Materials, Vol. 21, 1992, pp. 599-607.
[31] C. H. Raeder, L. E. Felton, V. A. Tanzi, and D. B. Knorr, “The Effect of Aging on Microstructure, Room-Temperature Deformation, and Fracture of Sn-Bi/Cu Solder Joints,” Journal of Electronic Materials, Vol. 23, 1994, pp. 611-617.
[32] R. R. Tummala, E. J. Rymaszewski, and A. G. Klopfenstein, Microelectronics Packaging Handbook, Part III, 2nd ed., Chapman & Hall, New York, 1997, pp. 221-223.
[33] J. W. Morris, J. L. F. Goldstein, and Z. Mei, “Microstructure and Mechanical Properties of Sn-In and Sn-Bi Solders,” JOM, Vol. 45, 1993, pp. 25-27.
[34] M. Ohring, Reliability and Failure of Electronic Material and Devices, Academic Press, San Diego, USA, 1998.
[35] 陳永樹, “電子構裝之力學特性分析,” 電子月刊, 第四卷, 第八期, 1998, pp. 79-88.
[36] C. Kanchanomai, Y. Miyashita, and Y. Mutoh, “Low-Cycle Fatigue Behavior and Mechanisms of a Lead-Free Solders 96.5Sn/3.5Ag,” Journal of Electronic Materials, Vol. 31, 2002, pp. 142-151.
[37] C. Kanchanomai, Y. Miyashita, and Y. Mutoh, “Low-Cycle Fatigue Behavior of Sn-Ag, Sn-Ag-Cu, Sn-Ag-Cu-Bi, Lead-Free Solders,” Journal of Electronic Materials, Vol. 31, 2002, pp. 456-465.
[38] J. S. Hwang and R. M. Vargas, “Solder Joint Reliability-Can Solder Creep,” Soldering and Surface Mount Technology, Vol. 2, 1990, pp. 38-45.
[39] C. Kanchanomai, Y. Miyashita, and Y. Mutoh, “Strain-Rate Effects on Low Cycle Fatigue Mechanism of Eutectic Sn-Pb Solder,” International Journal of Fatigue, Vol. 24, 2002, pp. 987-993.
[40] R. Berriche, M. E. Fine, and D. A. Jeannotte, “Environmental and Hold Time Effects on Fatigue of Low-Tin Lead-Based Solder,” Metallurgical Transactions A, Vol. 22, 1991, pp. 357-366.
[41] S. Vaynman, “Effect of Strain Rate on Fatigue of Low-Tin Lead-Based Solder,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 12, 1989, pp. 469-472.
[42] W. W. Lee, L. T. Nguyen, and G. S. Selvaduray, “Solder Joint Fatigue Models: Review and Applicability to Chip Scale Packages,” Microelectronics Reliability, Vol. 40, 2000, pp. 231-244.
[43] L. F. Coffin, Jr., “A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal,” Transactions of ASME, Vol. 76, 1954, pp. 931-950.
[44] S. S. Manson, “Behavior of Materials under Conditions of Thermal Stress,” Heat Transfer Symposium, University of Michigan Engineering Research Institute, 1953, pp. 9-75.
[45] H. D. Solomon, “Fatigue of 60/40 Solder,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 9, 1986, pp. 423-432.
[46] L. F. Coffin Jr., “Fatigue at High Temperature,” pp. 5-34 in Fatigue at Elevated Temperature, ASTM STP 520, Edited by A. E. Carden, A. J. McEvily, and C. H. Wells, American Society for Testing Materials, Philadelphia, PA, 1973.
[47] J. F. Eckel, “The Influence of Frequency on the Repeated Bending Life of Acid Lead,” Proceedings of the American Society for Testing and Materials, Vol. 51, 1951, pp. 745-760.
[48] J. K. Tien, S. V. Nair, and V. C. Nardone, “Creep-Fatigue Interaction in Structural Alloys,” pp. 179-214 in Flow and Fracture at Elevated Temperatures, Edited by R. Raj, ASM, Metals Park, OH, USA, 1985.
[49] X. Q. Shi, H. L. J. Pang, W. Zhou, and Z. P. Wang, “Low Cycle Fatigue Analysis of Temperature and Frequency Effects in Eutectic Solder Alloy,” International Journal of Fatigue, Vol. 22, 2000, pp. 217-228.
[50] W. Engelmaier, “Fatigue Life of Leadless Chip Carrier Solder Joints During Power Cycling,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 6, 1983, pp. 232-237.
[51] S. Knecht and L. Fox, “Integrated Matrix Creep: Application to Accelerated Testing and Lifetime Predition,” Chapter 16 in Solder Joint Reliability: Theory and Applications, Edited by J. H. Lau, Van Nostrand Reinhold, New York, 1991.
[52] A. R. Syed, “Thermal Fatigue Reliability Enhancement of Plastic Ball Grid Array (PBGA) Packages,” pp. 1211-1216 in Proceedings of the 46th Electronic Components and Technology Conference, Edited by R. R. Tummala and J. E. Billigmeier, Institute of Electrical and Electronics Engineers, New York, NY, 1996.
[53] G. E. Dieter, Mechanical Metallurgy, 3rd ed., McGraw-Hill, Inc., New York, 1986, pp. 466-470.
[54] J. A. Collins, Failure of Materials in Mechanical Design: Analysis, Prediction, Prevention, 2nd ed., John Wiley&Sons, Inc., New York, USA, 1993, pp. 488-494.
[55] S. S. Manson, G. R. Halford, and M. H. Hirschberg, “Creep-Fatigue Analysis by Strain-Range Partitioning,” pp. 12-24 in Design for Elevated Temperature Environment, Edited by S. Y. Zamrik, ASME, New York, 1971.
[56] Y. Kariya, T. Morihata, E. Hazawa, and M. Otsuka, “Assessment of Low-Cycle Fatigue Life of Sn-3.5 mass% Ag-X (X=Bi or Cu) Alloy by Strain-Range Partitioning Approach,” Journal of Electronic Materials, Vol. 30, 2001, pp. 1184-1189.
[57] H. Conrad, Z. Guo, Y. Fahmy, and D. Yang, “Influence of Microstructure Size on the Plastic Deformation Kinetics, Fatigue Crack Growth Rate, and Low-Cycle Fatigue of Solder Joints,” Journal of Electronic Materials, Vol. 28, 1999, pp. 1062-1070.
[58] B. T. Lampe, “Room Temperature Aging Properties of Some Solder Alloys,” Welding Journal, Vol. 55, 1976, pp. 330-s-340-s.
[59] H. J. Frost, “Microstructure and Mechanical Properties of Solder Alloys,” pp.266-278 in Solder Joint Reliability: Theory and Applications, Edited by J. H. Lau, Van Nostrand Reinhold, New York, 1991.
[60] E. C. Cutiongco, S. Vaynman, M. E. Fine, and D. A. Jeannotte, “Isothermal Fatigue of 63Sn-37Pb Solder,” Journal of Electronic Packaging, Vol. 112, 1990, pp. 110-114.
[61] S. Vaynman, M. E. Fine, and D. A. Jeannotte, “Isothermal Fatigue of Low Tin Lead Based Solder,” Metallurgical Transactions A, Vol. 19, 1988, pp. 1051-1059.
[62] S. M. Lee and D. S. Stone, “Grain Boundary Sliding in As-Cast Pb-Sn Eutectic,” Scripta Metallurgica et Materialia, Vol. 30, 1994, pp. 1213-1218.
[63] S. M. Lee and D. S. Stone, “Deformation and Fracture of Pb-Sn-Eutectic under Tensile and Fatigue Loading,” Journal of Electronic Packaging, Vol. 114, 1992, pp. 118-122.
[64] H. D. Solomon, “Low Cycle Fatigue of Sn96 Solder with Reference to Eutectic Solder and a High Pb Solder,” Journal of Electronic Packaging, Vol. 113, 1991, pp. 102-108.
[65] H. Jiang, R. Hermann, and W. J. Plumbridge, “High-Strain Fatigue of Pb-Sn Eutectic Solder Alloy,” Journal of Materials Science, Vol. 31, 1996, pp. 6455-6461.
[66] C. Kanchanomai, Y. Miyashita, and Y. Mutoh, “Low Cycle Fatigue Behavior and Mechanisms of a Eutectic Sn-Pb Solder 63Sn/37Pb,” International Journal of Fatigue, Vol. 24, 2002, pp. 671-683.
[67] Z. Guo, A. F. Sprecher, D. Y. Jung, and H. Conrad, “Influence of Environment on the Fatigue of Pb-Sn Solder Joints,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 14, 1991, pp. 833-837.
[68] J. Zhao, Y. Miyashita, and Y. Mutoh, “Fatigue Crack Growth Behavior of 95Pb-5Sn Solder under Various Stress Ratios and Frequencies,” International Journal of Fatigue, Vol. 22, 2000, pp. 665-673.
[69] W. Yang and R. W. Messler, Jr., “Microstructure Evolution of Eutectic Sn-Ag Solder Joints,” Journal of Electronic Materials, Vol. 23, 1994, pp. 765-772.
[70] M. Harada and R. Satoh, “Mechanical Characteristics of 96.5Sn/3.5Ag Solder in Microbonding,” IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 13, 1990, pp. 736-742.
[71] National Electronics Manufacturing Initiative (NEMI) Lead-Free Readiness Task Force Report, NEMI, 1999.
[72] P. Zarrow, “On the Forefront: Lead Free: Don’t Fight a Fact, Deal with it!” Circuit Assembly, Vol. 10, 1999, pp. 18-20.
[73] 巨剛實業有限公司網站, “專利紛爭譯文,” 譯自 Nikkei Electrons, Senju Metal Industry Co., Ltd., 日本, 2001, in “ http://www.greatgum.com.tw/view01.htm.”
[74] 賴玄金, “邁向21世紀之綠色電子產品國際會議紀要,” 電子與材料雜誌, 第八期, 2000, p. 111.
[75] F. Guo, S. Choi, J. P. Lucas, and K. N. Subramanian, “Effects of Reflow on Wettability, Microstructure and Mechanical Properties in Lead-Free Solders,” Journal of Electronic Materials, Vol. 29, 2000, pp. 1241-1248.
[76] C. M. L. Wu, D. Q. Yu, C. M. T. Law, and L. Wang, “Improvements of Microstructure, Wettability, Tensile and Creep Strength of Eutectic Sn-Ag Alloy by Doping with Rare-Earth Elements,” Journal of Materials Research, Vol. 17, 2002, pp. 3146-3154.
[77] P. L. Liu and J. K. Shang, “Influence of Microstructure on Fatigue Crack Growth Behavior of Sn-Ag Solder Interfaces,” Journal of Electronic Materials, Vol. 29, 2000, pp. 622-627.
[78] I. E. Anderson, B. A. Cook, J. Harringa, and R. L. Terpstra, “Microstructural Modifications and Properties of Sn-Ag-Cu Solder Joints Induced by Alloying,” Journal of Electronic Materials, Vol. 31, 2002, pp. 1166-1174.
[79] I. E. Anderson, B. A. Cook, J. L. Harringa, and R. L. Terpstra, “Sn-Ag-Cu Solders and Solder Joints: Alloy Development, Microstructure, and Properties,” JOM, Vol. 54, 2002, pp. 26-29.
[80] K. S. Kim, S. H. Huh, and K. Suganuma, “Effects of Cooling Speed on Microstructure and Tensile Properties of Sn-Ag-Cu Alloys.” Materials Science and Engineering A, Vol. 333, 2002, pp.106-114.
[81] D. W. Henderson, T. Gosselin, A. Sarkhel, S. K. Kang, W. K. Choi, D. Y. Shih, C. Goldsmith, and K. J. Puttlitz, “Ag3Sn Plate Formation in the Solidification of Near Ternary Eutectic Sn-Ag-Cu Alloys,” Journal of Materials Research, Vol. 17, 2002, pp. 2775-2778.
[82] C. Kanchanomai, Y. Miyashita, Y. Mutoh, and S. L. Mannan, “Influence of Frequency on Low Cycle Fatigue Behavior of Pb-Free Solder 96.5Sn-3.5Ag,” Materials Science and Engineering A, Vol. 345, 2003, pp. 90-98.
[83] I. Shohji, T. Yoshida, T. Takahashi, and S. Hioki, “Tensile Properties of Sn-3.5Ag and Sn-3.5Ag-0.75Cu Lead-Free Solders,” Materials Transactions, Vol. 43, 2002, pp. 1854-1857.
[84] 劉家明, “Sn-3.5Ag無鉛銲料與BGA墊層反應之研究,” 國立中央大學化學工程研究所碩士論文, 2000.
[85] 蕭麗娟, “SnAgCu無鉛銲料與BGA之Au/Ni墊層反應之研究,” 國立中央大學化學工程與材料工程研究所碩士論文, 2002.
[86] 曾乙修, “電子構裝銦錫無鉛銲錫與鎳及銅基材之界面反應研究,” 國立臺灣大學材料科學與工程學研究所博士論文, 2000.
[87] 張秀玉, “無鉛銲料與基材之反應潤濕,” 國立清華大學化學工程學系碩士論文, 2001.
[88] 饒慧美, “添加Sb、Cu對無鉛銲料Sn-Ag銲點之機械性質及微結構研究,” 國立成功大學機械工程學系碩士論文, 1999.
[89] 楊文忠, “錫銦與錫銦銀無鉛銲料之高溫機械性質研究,” 中華大學機械與航太工程研究所碩士論文, 2000.
[90] “Standard Practice for Strain-Controlled Fatigue Testing,” ASTM E606-92, Annual Book of ASTM Standards, Vol. 3.01, American Society for Testing and Materials, 1998, pp. 528-542.
[91] “Standard Test Method for Tension Testing of Metallic Material,” ASTM E8M-98, Annual Book of ASTM Standards, Vol. 3.01, American Society for Testing and Materials, 1998, pp. 78-98.
[92] M. E. Loomans and M. E. Fine, “Tin-Silver-Copper Eutectic Temperature and Composition,” Metallurgical and Materials Transactions A, Vol. 31A, 2000, pp.1155-1162.
[93] K. W. Moon, W. J. Boettinger, U. R. Kattner, F. S. Biancaniello, and C. A. Handwerker, “Experimental and Thermodynamic Assessment of Sn-Ag-Cu Solder Alloys,” Journal of Electronic Materials, Vol. 29, 2000, pp. 1122-1136.
[94] R. E. Reed-Hill and R. Abbaschian, Physical Metallurgy Principles, 3rd ed., International Thomson Publishing, New York, 1992, Chapter 23.
[95] Z. Mei, D. Grivas, M. C. Shine, and J. W. Morris, Jr., “Superplastic Creep of Eutectic Tin-Lead Solder Joints,” Journal of Electronic Materials, Vol. 19, 1990, pp. 1273-1280.
[96] W. J. Plumbrige and C. R. Gagg, “Effects of Strain Rate and Temperature on the Stress-Strain Response of Solder Alloys,” Journal of Materials Science: Materials in Electronics, Vol. 10, 1999, pp. 461-468.
[97] S. R. Agnew and J. R. Weertman, “ Cyclic Softening of Ultrafine Grain Copper,” Materials Science and Engineering A, Vol. A244, 1998, pp. 145-153.
[98] N. Wade, K. Wu, J. Kunii, S. Yamada, and K. Miyahara, “Effects of Cu, Ag and Sb on the Creep-Rupture Strength of Lead-Free Solder Alloys,” Journal of Electronic Materials, Vol. 30, 2001, pp. 1228-1231.
[99] T. G. Nieh, J. Wadsworth, and O. D. Sherby, Superplasticity in Metals and Ceramics, The Press Syndicate of the University of Cambridge, United Kingdom, 1997, Chapter 4.
[100] B. P. Kashyap and G. S. Murty, “Superplastic Behavior of the Sn-Pb Eutectic in the As-Worked State,” Metallurgical Transactions A, Vol. 13A, 1982, pp. 53-58.
[101] T. Haruna, T. Shibayanagi, S. Hori, and N. Furushiro, “Effect of Grain Boundary Sliding During Superplastic Deformation,” Materials Transactions, JIM, Vol. 33, 1992, pp. 374-379.
[102] R. B. Vastava and T. G. Langdon, “Investigation of Intercrystalline and Interphase Boundary Sliding in the Superplastic Pb-62% Sn Eutectic,” Acta Metallurgica, Vol. 27, 1979, pp. 251-257.
[103] R. Z. Valiev and T. G. Langdon, “Investigation of the Role of Intragranular Dislocation Strain in the Superplastic Pb-62% Sn Eutectic Alloy,” Acta Metallurgica et Materialia, Vol. 41, 1993, pp. 949-954.
[104] J. Zhao, “Effect of Aging Treatment on Fatigue Crack Growth in Eutectic Sn-Pb Alloy,” Scripta Materialia, Vol. 48, 2003, pp. 1277-1281.
[105] Z. Mei and J. W. Morris, JR., “Superplastic Creep of Low Melting Point Solder Joints,” Journal of Electronic Materials, Vol. 21, 1992, pp. 401-407.
指導教授 林志光(Chih-Kuang Lin) 審核日期 2003-7-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明