博碩士論文 90323084 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:18.225.234.89
姓名 黃偉庭(Wei-Ting Huang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 微電化學模擬加工與成果分析
(Electrochemical micro machining for micro-manufacturing.)
相關論文
★ 迴轉式壓縮機泵浦吐出口閥片厚度對性能影響之研究★ 鬆弛時間與動態接觸角對旋塗不穩定的影響
★ 電化學製作針錐微電極之製程研究與分析★ 蚶線形滑轉板轉子引擎設計與實作
★ 利用視流法分析金屬射出成形脫脂製程中滲透度與毛細壓力之關係★ 應用離心法實驗探求多孔介質飽和度與毛細力之關係
★ 利用網絡模型數值模擬粉末射出成形製程毛細吸附脫脂機制★ 轉注成形充填過程之巨微觀流數值模擬
★ 二維熱流效應對電化學加工反求工具形狀之分析★ 金屬粉末射出成形製程中胚體毛細吸附脫脂之數值模擬與實驗分析
★ 飽和度對金屬射出成形製程中毛細吸附脫脂之影響★ 轉注成型充填過程巨微觀流交界面之數值模擬
★ 轉注成型充填過程中邊界效應之數值模擬★ 鈦合金整流板電化學加工技術研發
★ 射出/壓縮轉注成型充填階段中流場特性之分析★ 脈衝電化學加工過程中氣泡觀測與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 微電化學加工(Electrochemical Micro-Machining,簡稱 EMM),在未來各種細微加工技術的應用中,佔有極大的優勢。此篇文章指主要在介紹微電化學加工設備的架設,包含了加工主機、電極裝置及電解液循環系統..等。本文以0.2~0.5mm的銅針,及改變相關電場,及進給速度、電解液溫度等參數,來實際模擬微電化學加工情形。實驗中,以硝酸鈉水溶液作為電解液,藉由分析各參數對於加工工件的影響。
由實驗結果顯示,輸出電壓、進給速度與電解液的流動方式,佔很重要的因素,直接影響到加工成果。而且電解液的循環系統,亦是重要的課題。必須使用過濾裝置,才能使加工鈑件不產生二次放電影響加工精度。實驗結果亦顯示,由於電極針過於細小,導致加入高電流時,會產生銅離子解離的現象,流轉堆積在電極針前端,導致加工時孔徑的精度遭到破壞。
摘要(英) Electrochemical micro machining (EMM) appears to be very promising as a future micro-machining technique since in many areas of applications it offers several advantages. The paper highlights the design and development of an EMM system set-up, which includes various components such as mechanical machining components, electrical systems and an electrolyte flow system, etc. Copper electrode tubes ranging from 0.2mm to 0.5mm are used as tools. Different parameters, such as the working voltage, the feed speed and the electrolyte flow temperature are used to get the aperture’s sizes of different alloys. Sodium nitrate solution is used as the electrolyte.
The result shows that working voltage, the feed speed and the electrolyte flowing direction play an important part in the EMM proceeding. In EMM set-up, the electrolyte flow circulating system is essential and must be considered carefully, otherwise the dirty electrolyte will flow into the machining chamber again and cause second discharging of the work piece and infect the aperture’s sizes.
Because the copper electrode tube is too small, a use current passing will destroy the copper electrode tube. The copper ion will pile up at the top of the copper electrode tube. The copper form shape will change that will infect the aperture’s sizes as well.
關鍵字(中) ★ 微電化學加工 關鍵字(英) ★ Electrochemical micro-machining
★ EMM
論文目次 摘要............................................................. i
目錄............................................................. iii
圖表目錄......................................................... vi
第一章緒論........................................................1
1-1 前言......................................................... 1
1-2 文獻回顧..................................................... 2
1-3 研究目的..................................................... 6
第二章實驗原理
2-1 法拉第定律及歐姆定律
2-1-1 法拉第定律................................................. 7
2-1-2 歐姆定律................................................... 7
2-2 電流密度,導電度及空隙分數................................... 8
2-2-1 電流密度................................................... 8
2-2-2 導電度..................................................... 8
2-2-3 空隙分數................................................... 8
2-3 電化學反應式................................................. 9
2-4 導電度與濃度之關係式......................................... 9
2-5 柏努力定律................................................... 10
2-6 熱流場分析................................................... 11
2-7 兩極間電壓探討............................................... 11
第三章實驗裝置與實驗步驟......................................... 13
3-1 機台本體..................................................... 13
3-1-1 機台本體架設............................................... 13
3-1-2 刀具進給系統............................................... 14
3-1-3 工件夾具系統及加工室....................................... 15
3-1-4 加工平台................................................... 15
3-2 電源供應器................................................... 16
3-3 電解液循環系統............................................... 16
3-4 步進馬達..................................................... 17
3-5 工件及刀具材料............................................... 18
3-5-1 工件材料................................................... 18
3-5-2 刀具材料................................................... 18
3-6 沉水馬達..................................................... 19
3-7 實驗步驟及注意事項........................................... 19
3-7-1 實驗步驟................................................... 19
3-7-2 實驗注意事項............................................... 20
第四章結果與討論................................................. 21
4-1 不同進給速度微電化學加工孔徑分析
(電解液溫度24 oC )............................................... 21
4-2 不同進給速度微電化學加工孔徑分析
(電解液溫度30 oC )............................................... 22
4-3 不同電壓下微電化學加工孔徑分析............................... 22
4-4 微電化學與放電加工孔隙及表面分析............................. 23
4-5 刀具和電流間的關係........................................... 24
第五章結論....................................................... 25
參考文獻......................................................... 26
表............................................................... 32
圖............................................................... 38
附錄
A Similarity Theory ............................................. 55
參考文獻 1. B. Bhattacharyya & B. Doloi & P. S. Sridhar, “Electrochemical micro- machining:new possibilities: for micro-manufacturing”, Journal of Materials Processing Technology, Vol.113, pp.301-305, (2001).
2. 木本康雄著,賴耿陽譯著, “精密加工之電學應用”, 復漢出版社, (1982).
3. 佐藤敏一著,賴耿陽譯著, “金屬腐蝕加工技術”, 復漢出版社, (1986)
4. J. F. Thorpe & R. D. Zerkle, “Theoretical Analysis of the Equilibrium Sinking of Shallow, Axially Symmetric, Cavities by Electrochemical Machining”,
Electrochemical Society, Princeton, pp.1-39, (1971).
5. R. Hunt, “The Numerical Solution of Elliptic Free Boundary Problems Using
Multigrid Tecniques” , J. Comp. Phys. , Vol.65, pp.448-461, (1986).
6. R. Hunt, “An Embedding Method for the Numerical Solution of Cathode Design
Problem in Electrochemical Machining”, International Journal for Numerical
Methods in Engineering, Vol. 29, pp.1177-1192, (1990).
7. 蔡和蒼,”反求法在電化學加工刀具設計上之應用”,國立中央大學機械研究
所碩士論文,(1995).
8. M. Datta and D. Harris, “Electrochemical micro-machining: An
environmentally friendly, high speed processing technology”, Electrochemical
Acta, Vol. 42, pp.3007-3013, (1997).
9. 鍾兆才, ”熱流場參數對電化學加工工件外型預估與工具電及設計影響之探
討” ,國立中央大學機械研究所碩士論文, (1996).
10. H. Tipton, “Dynamics of Electrochemical Machining Proc.”, 5th Intern. Conf. Mach. Tool Res. , Birmingham, England, pp.509-522, (1964).
11. K. Kawafune, T. Mikoshiba, K. Noto and K. Hirata, “Accuracy in Cavity Sinking by ECM”, Annals of CIRP, Vol.15 , pp.65/1-65/13 (1967).
12. J. F. Thorpe and R. D. Zerkle, “An Analytical Basis for Investigation the
Dynamics of Electrochemical Machining”, report UCME-318-1 , Mechanical
Engineering Dept. , University of Cincinnati, Ohio, December, (1967).
13. J. F. Thorpe, “On the Kinematics of Electrochemical Machining”, ASME Winter Annual Meeting, New York, Dec. , (1968).
14. J. F. Thorpe and R. D. Zerkle, “Analytic Determination of the Equilibrium
Electrode Gap in Electrochemical Machining”, Int. Jour. Mach. Tool Des. And
Res. , Vol.9, pp.131-144, (1969).
15. 陳川吉,“電化學加工過程熱流現象之分析”,國立中央大學機械研究所碩士
論文, (1990).
16. Viola Kirchner& Philippe Allongue, “Electrochemical Micro-machining”,
Accounts of chemical research, Vol.34, No.5, (2001).
17. A. L. Krylov, Soviet Phys. Doklady 13,15 (1968).
18. D. E. Collete, R. C. Hewson-Browne and D. W. Windle, “A Complex Variable
Approach to Electrochemical Machining Problems”, Journal of Engineer Mach. ,
Vol.4, pp.29-37, (1970).
19. M. Datta & D. Landolt, “Fundamental aspects and applications of electrochemical micro fabrication”, Electrochemical Acta 45, pp.2535–2558, (2000).
20. V. K. Jain, P. F. Yogindra and S. Murugan, “Prediction of Anode Profile in ECBD and ECD Operation”, Int. J. Mach. Tools Manufacture, Vol.27, No.1, pp.113-114, (1987).
21. 陳志誠,“電化學加工刀具之設計”,國立中央大學機械研究所碩士論文,
(1987).
22. L. W. Hourng and C. S. Chang, “Numerical Calculation of Electrochemical
Drilling”, J. of Applied Electrochemistry, Vol.23, pp.316-321, (1993).
23. L. W. Hourng and C. S. Chang, “Numerical Simulation of Two-dimensional Fluid Flow in Electrochemical Drilling”, J. of Applied Electrochemistry, Vol.24, pp. 1170-1175, (1994).
24. J. Hopenfeld & R. R. Cole, “Electrochemical Machining – Prediction and
Correlation of Process Variables”, Journal of Engineering for Industry,
pp.455-461, (1966).
25. C. Y. Yu, Z. Y. Hou, X. K. Yao and Y. S. Yang, “The Experimental Investigations on Gas Bubble Distribution in Electrochemical Machining Gap”, Proceed. of the 7th Int. Synposiam on Electromachining , pp.393-403, (1983).
26. V. Chetty and V. Radhakrishnan, “Electrolyte Velocity Measurement Using LDV in an Experimental Electrochemical Machining Setup”, Int. J. Mach. Tool Des. Res. Vol. 19, pp. 157-163, (1979).
27. 鍾俊傑,“電化學加工中氣泡形程與發展之實驗分析”,國立中央大學機械研
究所碩士論文, (1997).
28. V. Lescuras, I. Zouari, F. Valentin and F. Lapicque, “A Photo Physical Technique For The Measurement Of Local Oxygen Concentration Near An Electrode
Surface”, Journal of Applied Electrochemistry, Vol.24, pp.652-657, (1994).
29. H. Ramasawmy & L. Blunt, “3D Surface Topography Assessment Of The
Effect Of Different Electrolytes During Electrochemical Polishing Of EDM
Surfaces”, International Journal of Machine Tools & Manufacture, Vol.42, pp.
567–574, (2002).
30. O.V. Krishnaiah Chetty and V. Radhakrishnan, “ Surface Studies in ECM Using an Relocation Machining Fixture”, Int. J. Mach. Des. Res. Vol.18, pp. 1-8, (1978).
31. A. H. Meleka and D. A. Glew, “ Electrochemical Machining “ , International Metals Reviews , September, pp.229-252, (1977).
32. V. K. Jain, Vinod Kuman Jain and P. C. Pandey, “Corner Reproduction Accuracy in Electro-Chemical Drilling (ECD) of Blind Holes”, Journal of Engineering for Industry, Vol.106, pp.55-62, (1984).
33. F. Zawistowski, “New System of Electrochemical Form Machining Using
Universal Rotation Tools”, Int. J. Mach. Tools Manufacture, Vol. 30, No.3,
pp.475-483, (1990).
34. Hiroaki Suzuki, “Microfabrication Of Chemical Sensors And Biosensors For
Environmental Monitoring”, Materials Science and Engineering C 12, pp.55-61,
(2000).
35. I. M. Crichton and J. A. Mcgeough, “Studies of the Discharge Mechanicals in Electrochemical Arc Machining”, Journal of Applied Electrochemistry, Vol.15, pp. 113-119, (1985).
36. Viola Kirchner, Xinghua Xia and Rolf Schuster, “Electrochemical
Nanostructuring with Ultrashort Voltage pulses”, Acc. Chem. Res. Lond. 34,
pp.371-377, (2001).
37. Peter Novak and Ivo. Rousar , “ Intergranular Corrosion in Electrochemical
Machining “ , Materials Chemistry and Physics , Vol. 10 , (1984) , pp. 155-161.
38. C. Gabrielli , F. Huet , R. Wiart and J. Zoppas-Ferrira , “Dynamic Behavior Of An
Electrolyze With A Two Phase Solid-liquid Electrolyte Part 1: Spectral Analysis
Of potential Fluctuations”, Journal of Applied Electrochemistry, Vol.24 ,
pp.1228-1234, (1994).
指導教授 洪勵吾(Lih-Wu Hourng) 審核日期 2003-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明