參考文獻 |
[1]T. Takagi and M. Sugeno, ``Fuzzy identification of systems and its applications to modeling and control', IEEE Trans. Syst. Man & Cybern., vol. 15, no. 1, pp. 116--132, Jan. 1985.
[2]M. Sugeno and G.T. Kang, ``Structure identification of Fuzzy model', Fuzzy Sets and Systems, vol. 28, pp. 15--33, 1988.
[3]K. Tanaka and M. Sugeno, ``Stability analysis and design of fuzzy control systems', Fuzzy Sets and Systems, vol. 45, pp. 135--156, 1992.
[4]T. Takagi and M. Sano, ``Trajectory stabilization of a model car via fuzzy control', Fuzzy Sets and Systems, vol. 70, pp. 155--170, 1995.
[5]H.O. Wang, K. Tanaka, and M.F. Griffin, ``An approach to fuzzy control of nonliner systems: stability and design issues', IEEE Trans. Fuzzy systems, vol. 4, no. 1, pp. 14--23, Feb. 1996.
[6]K. Tanka, T. Ikeda, and H.O. Wang, ``Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs', IEEE Trans. Fuzzy systems, vol. 6, no. 2, pp. 250--256, May 1998.
[7]S.G. Cao, N.W. Rees, and G.Feng, ``Analysis and design of fuzzy control systems using dynamic fuzzy global model', Fuzzy Sets and Systems, vol. 75, pp. 47--62, 1995.
[8]S.G. Cao, N.W. Rees, and G.Feng, ``Stability analysis of fuzzy control systems', IEEE Trans. Syst. Man & Cybern.-part B: Cybernetics, vol. 26, no. 1, pp. 201--204, Feb. 1996.
[9]G. Feng, S.G. Cao, N.W. Rees, and C.K. Chak, ``Design of fuzzy control systems with stability', Fuzzy Sets and Systems, vol. 85, pp. 1--10, 1997.
[10]S.H. Zak, ``Stabilizing fuzzy system models using linear controllers', IEEE Trans. Fuzzy systems, vol. 7, no. 2, pp. 236--240, Apr. 1999.
[11]I.R. Petersen, ``A stabilization algorithm for a class of uncertain linear systems', Syst. & Cont. Lett., vol. 8, pp. 351--357, 1987.
[12]D.S. Bernstein, ``Robust static and dynamic output-feedback stablization: deterministic and stocahstic perspectives', IEEE Trans. Automat. Contr., vol. 32, no. 12, pp. 1076--1084, Dec. 1987.
[13]D.S. Bernstein, ``The optimal projection equations for static and dynamic output feedback: the singular case', IEEE Trans. Automat. Contr., vol. 32, no. 12, pp. 1139--1143, Dec. 1987.
[14]K. Zhou and P.P. Khargonekar, ``Robust stabilization of linear systems with norm-bounded time-varying uncertainty', Syst. & Cont. Lett., vol. 10, pp. 17--20, 1988.
[15]P.P. Khargonekar, I.R. Petersen, and K. Zhou, ``Robust stabilization of uncertain linear systems: quadratic stabilizability and H∞ control theory', IEEE Trans. Automat. Contr., vol. 35, no. 3, pp. 356--361, Mar. 1990.
[16]L. Xie, M. Fu, and C.E. deSouza, ``H∞ control and quadratic stabilization of systems with parameter uncertainty via output feedback', IEEE Trans. Automat. Contr., vol. 37, no. 8, pp. 1253--1256, Aug. 1992.
[17]J.C. Geromel, J. Bernussou, and M.C. deOliveira, ``H2-norm optimization with constrained dynamic output feedback controllers: decentralized and reliable control', IEEE Trans. Automat. Contr., vol. 44, no. 7, pp. 1449--1454, July 1999.
[18]S.G. Cao, N.W. Rees, and G. Feng, ``Analysis and design of fuzzy control systems using dynamic fuzzy state space models', IEEE Trans. Fuzzy systems, vol. 7, pp. 192--200, 1999.
[19]G. Feng and J. Ma, ``Quadratic stabilization of uncertain discrete-time fuzzy dynamic system', IEEE Trans. Circuits and Systems-I: Fundamental theory and Applications, vol. 48, no. 11, pp. 1137--1344, 2001.
[20]G. Feng, ``Approach to quadratic stabilization of uncertain fuzzy dynamic system', IEEE Trans. Circuits and Systems-I: Fundamental theory and Applications, vol. 48, no. 6, pp. 760--769, 2001.
[21]D.S. Berstein and W.M. Haddad, ``LQG control with an H∞ performance bound: a Riccati equation approach', IEEE Trans. Automat. Contr., vol. 34, no. 3, pp. 293--305, Mar. 1989.
[22]W.M. Haddad and D.S. Berstein, ``Generalized Riccati equations for the full- and reduced-order mixed-norm H2/H∞ standard problem', Syst. & Cont. Lett., vol. 14, pp. 185--197, 1990.
[23]J.Li, D.Niemann, H.O. Wang, and K. Tanaka, ``Parallel distributed compensation for Takagi-Sugeno fuzzy models: multiobjective controller design',in Proc. of American Control Conf., San Diego CA., June 1999, pp. 1832--1836.
[24]C. Scherer, P. Gahinet, and M. Chilali, ``Multiobjective output-feedback control via LMI optimization', IEEE Trans. Automat. Contr., vol. 42, no. 7, pp. 896--911, July 1997.
[25]H.-J. Kang, C.Kwon, Y.-H. Yee, and M. Park, ``L2 robust stability analysis for the fuzzy feedback linearization regulator', in Proc. of the 6th IEEE Int'l Conf. on Fuzzy Systems, vol. 1, pp. 277--280, 1997.
[26]H.-J. Kang, C.Kwon, Y.-H. Yee, and M. Park, ``Robust stability analysis and design method for the fuzzy feedback linearization regulator', IEEE Trans. Fuzzy systems, vol. 6, no. 4, pp. 464--472, Nov. 1998.
[27]K. Kiriakidis, A. Grivas, and A. Tzes, ``Quadratic stability analysis of the Takagi-Sugeno fuzzy model', Fuzzy Sets and Systems, vol. 98, pp. 1--14, 1998.
[28]M.C.M. Teixeira and S.H. Zak, ``Stabilizing controller design for uncertain nonlinear systems using fuzzy models', IEEE Trans. Fuzzy systems, vol. 7, no. 2, pp. 133--142, Apr. 1999.
[29]S.G. Cao, N.W. Rees, and G. Feng, ``Quadratic stability anaiysis and design of continous fuzzy control systems', Int'l. Journal on Systems Science, vol. 27, no. 2, pp. 193--200, 1996.
[30]H.J. Lee, J.B. Park, and G. Chen, ``Robust fuzzy control of nonlinear systems with parametric uncertainties', IEEE Trans. Fuzzy Systems, vol. 9, no. 2, pp. 369--379, April 2001.
[31]K. Kiriakidis, ``Robust stabilization of the Takagi-Sugeno fuzzy model via bilinear matrix inequalities', IEEE Trans. Fuzzy Systems, vol. 9, no. 2, pp. 269--277, April 2001.
[32]K. Tanka, T. Ikeda, and H.O. Wang, ``Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: quadratic stabilizability, H∞ control theory, and linear matrix inequalities', IEEE Trans. Fuzzy systems, vol. 4, no. 1, pp. 1--13, Feb. 1996.
[33]K. Tanaka, T. Hori, and H.O. Wang, ``New robust and optimal designs for Takagi-Sugeno fuzzy control systems', in Proc. of 1999 IEEE Int'l Conf. on Control Appl., pp. 415--420, 1999.
[34]S.G. Cao, N.W. Rees, and G. Feng, ``H∞ control of nonlinear continous-time systems based on dynamical fuzzy models ', Int'l. Journal on Systems Science, vol. 27, no. 9, pp. 821--830, 1996.
[35]S.G. Cao, N.W. Rees, and G. Feng, ``H∞ control of uncertain fuzzy continous-time systems', Fuzzy Sets and Systems, vol. 115, pp. 171--190, 2000.
[36]G. Feng, S.G. Cao, N.W. Rees, C.M. Cheng, and J. Ma, ``H∞ control of continous time fuzzy dymanic systems', IEEE Int'l. Conf. Fuzzy systems, vol. 2, pp. 1141--1146, 1997.
[37]Z. Han and G. Feng, ``State feedback H∞ controller design of fuzzy dymanic systems using LMI techniques', in Proc. of IEEE World Congress on Computational Intelligence, Anchorange, AK, vol. 1, pp. 538--544, May. 1998.
[38]Z. Han, G. Feng, and N. Zhang, ``Dynamic output feedback H∞ controller design of fuzzy dynamic systems using LMI techniques', in Proc. of Second International Conference on Knowledge-Based Intelligent Electronic Systems, vol. 2, pp. 343--352, 1998.
[39]A. Jadbabaie, M. Jamshidi, and A. Titli, ``Guaranteed-cost design of continous-time Takagi-Sugeno fuzzy controller via linear matrix inequalities', in Proc. of IEEE World Congress on Computational Intelligence, Anchorange, AK, vol. 1, pp. 268--273, May. 1998.
[40]S.-K. Hong and R. Langari, ``Synthesis of an LMI-based fuzzy control system with guaranteed optimal H∞ performance', in Proc. of IEEE World Congress on Computational Intelligence, Anchorange, AK, vol. 1, pp. 422--427, May. 1998.
[41]B.S. Chen, C.S. Tseng, and H.J. Uang, ``Mixed H2/H∞ fuzzy output feedback control design for nonlinear dynamic systems: an LMI approach', IEEE Trans. Fuzzy systems, vol. 8, no. 3, pp. 249--265, June 2000.
[42]Y.Y. Cao and P.M. Frank, ``Robust H∞ disturbance attenuation for a class of uncertain discrete-time fuzzy systems', IEEE Trans. Fuzzy Systems, vol. 8, no. 4, pp. 406--415, August 2000.
[43]K.R. Lee, E.T. Jeung, and H.B. Park, ``Robust fuzzy H∞ control of uncertain nonlinear systems via state feedback: an LMI approach', Fuzzy Sets and Systems, vol. 120, pp. 123--134, 2001.
[44]S. Boyd, L.E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, PA., 1994.
[45]J.C. Geromel and M.C. deOliveira, ``H2 and H∞ robust filtering for convex bounded uncertain systems', IEEE Trans. Automat. Contr., vol. 46, no. 1, pp. 100--107, Jan. 2001.
[46]K. Zhou, Essentials of Robust Control, Prentice-Hall, Upper Saddle River, NJ., 1998.
[47]H.D. Tuan, P. Apkarian, T. Narikiyo, and Y. Yamamoto, ``New fuzzy control model and dynamic output feedback parallel distributed compensation', IEEE Trans. Fuzzy Systems, 2002, submitted for publication.
[48]K. Tanaka and H.O. Wang, Fuzzy Control Systems Design: A Linear Matrix Inequality Approach, John Wiley & Sons, Inc., New York, NY, 2001.
[49]J.C. Lo and S.W. Hou, ``Generalized H2 control for fuzzy systems with LFT framework', in Proc. 10th Nat'l Conf. Fuzzy Theory and Appl., Shinchu, TW, November 2002, pp. 19--22. |