博碩士論文 90323099 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:47 、訪客IP:3.15.211.71
姓名 侯士偉(Shih-Wei Hou)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 廣義H2模糊控制-連續系統 線性分式轉換法
相關論文
★ 強健性扇形區域穩定範圍之比較★ 模糊系統混模強健控制
★ T-S模糊模型之建構、強健穩定分析與H2/H∞控制★ 廣義模糊控制-離散系統 線性分式轉換法
★ H∞模糊控制-連續系統 線性分式轉換法★ H∞模糊控制—離散系統 線性分式轉換法
★ 強健模糊動態輸出回饋控制-Circle 與 Popov 定理★ 強健模糊觀測狀態回饋控制-Circle與Popov定理
★ H_infinity 取樣模糊系統的觀測型控制★ H∞取樣模糊系統控制與觀測定理
★ H-ihfinity取樣模糊系統動態輸出回饋控制★ H∞模糊系統控制-多凸面法
★ H∞模糊系統控制-寬鬆變數法★ 時間延遲 T-S 模糊系統之強健 H2/H(Infinity) 控制與估測
★ 寬鬆耗散性模糊控制-波雅定理★ 耗散性估測器-波雅定理
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文可分為兩大部分來進行討論,以不同形式的控制條件來研究相同系統的控制問題,其中第一部份是以三階 (cubic) 的形式來進行系統的分析與研究,而第二部份則是以二階 (quadratic) 的形式來對系統進行分析討論,其中兩者都是以蕭氏轉換 (Schur complement) 及全等轉換 (congruence transformation) 的方式對控制問題進行轉換之後的分析與推導。
論文中所研究的是一個含有分式項的模糊系統控制問題,以線性分式轉換 (Linear fractional transformation, LFT) 為架構的動態輸出回饋控制器來使其穩定,並滿足廣義H2 (Generalized H2) 性能指標的要求。其分析最主要的方式是應用全等轉換的技巧來進行控制器的分析與設計,使含有分式項的模糊系統能達到穩定並滿足廣義 H2 的性能指標問題。在這個部分中,我們將控制器的架構以三階與二階兩種不同形式的方式表現出來。經過全等轉換之後,我們分別可以得到兩組線性矩陣不等式 (Linear matrix inequalities, LMIs) 來對原本的控制問題求解。除了上述兩個線性矩陣不等式外,我們還要考慮比例條件 (scaling condition) 的限制。然後,以一個球桿系統的例子來進行電腦模擬。最後舉一個含有不確定項的模糊系統來印證 LFT模糊系統是可以用來討論含有不確定項的模糊系統,以質簧系統的例子來進行電腦模擬分析。
摘要(英) No
關鍵字(中) ★ 線性矩陣不等式
★ 廣義H2
★ T-S模糊模型
★ 線性分式轉換法
關鍵字(英) ★ LMIs
★ Generalized H2
★ T-S fuzzy model
★ LFT
論文目次 第一章 簡介
1.1 文獻回顧
1.2 研究動機
1.3 論文結構
1.4 符號標記
第二章 三階數學模型與廣義H2性能指標
2.1 數學模型
2.2 廣義H2性能指標
第三章 三階LFT動態輸出回饋控制器的設計
3.1 廣義H2性能條件
3.2 廣義H2性能寬鬆條件
第四章 球桿系統例子
4.1 球桿系統數學架構
4.2 球桿系統求解
第五章 二階數學模型與廣義H2性能指標
5.1 數學模型
5.2 廣義H2性能指標
第六章 二階LFT動態輸出回饋控制器的設計
6.1 廣義H2性能條件
6.2 廣義H2性能寬鬆條件
第七章 球桿系統例子
7.1 球桿系統數學架構
7.2 球桿系統求解
第八章 特殊情況數學模型與廣義H2性能指標
8.1 數學模型
8.2 廣義H2性能指標
8.3 廣義H2性能條件
第九章 質簧系統例子
9.1 質簧系統數學架構
9.2 質簧系統求解
第十章 結論與未來研究方向
10.1 總結
10.2 未來研究方向
參考文獻 [1]T. Takagi and M. Sugeno, ``Fuzzy identification of systems and its applications to modeling and control', IEEE Trans. Syst. Man & Cybern., vol. 15, no. 1, pp. 116--132, Jan. 1985.
[2]M. Sugeno and G.T. Kang, ``Structure identification of Fuzzy model', Fuzzy Sets and Systems, vol. 28, pp. 15--33, 1988.
[3]K. Tanaka and M. Sugeno, ``Stability analysis and design of fuzzy control systems', Fuzzy Sets and Systems, vol. 45, pp. 135--156, 1992.
[4]T. Takagi and M. Sano, ``Trajectory stabilization of a model car via fuzzy control', Fuzzy Sets and Systems, vol. 70, pp. 155--170, 1995.
[5]H.O. Wang, K. Tanaka, and M.F. Griffin, ``An approach to fuzzy control of nonliner systems: stability and design issues', IEEE Trans. Fuzzy systems, vol. 4, no. 1, pp. 14--23, Feb. 1996.
[6]K. Tanka, T. Ikeda, and H.O. Wang, ``Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs', IEEE Trans. Fuzzy systems, vol. 6, no. 2, pp. 250--256, May 1998.
[7]S.G. Cao, N.W. Rees, and G.Feng, ``Analysis and design of fuzzy control systems using dynamic fuzzy global model', Fuzzy Sets and Systems, vol. 75, pp. 47--62, 1995.
[8]S.G. Cao, N.W. Rees, and G.Feng, ``Stability analysis of fuzzy control systems', IEEE Trans. Syst. Man & Cybern.-part B: Cybernetics, vol. 26, no. 1, pp. 201--204, Feb. 1996.
[9]G. Feng, S.G. Cao, N.W. Rees, and C.K. Chak, ``Design of fuzzy control systems with stability', Fuzzy Sets and Systems, vol. 85, pp. 1--10, 1997.
[10]S.H. Zak, ``Stabilizing fuzzy system models using linear controllers', IEEE Trans. Fuzzy systems, vol. 7, no. 2, pp. 236--240, Apr. 1999.
[11]I.R. Petersen, ``A stabilization algorithm for a class of uncertain linear systems', Syst. & Cont. Lett., vol. 8, pp. 351--357, 1987.
[12]D.S. Bernstein, ``Robust static and dynamic output-feedback stablization: deterministic and stocahstic perspectives', IEEE Trans. Automat. Contr., vol. 32, no. 12, pp. 1076--1084, Dec. 1987.
[13]D.S. Bernstein, ``The optimal projection equations for static and dynamic output feedback: the singular case', IEEE Trans. Automat. Contr., vol. 32, no. 12, pp. 1139--1143, Dec. 1987.
[14]K. Zhou and P.P. Khargonekar, ``Robust stabilization of linear systems with norm-bounded time-varying uncertainty', Syst. & Cont. Lett., vol. 10, pp. 17--20, 1988.
[15]P.P. Khargonekar, I.R. Petersen, and K. Zhou, ``Robust stabilization of uncertain linear systems: quadratic stabilizability and H∞ control theory', IEEE Trans. Automat. Contr., vol. 35, no. 3, pp. 356--361, Mar. 1990.
[16]L. Xie, M. Fu, and C.E. deSouza, ``H∞ control and quadratic stabilization of systems with parameter uncertainty via output feedback', IEEE Trans. Automat. Contr., vol. 37, no. 8, pp. 1253--1256, Aug. 1992.
[17]J.C. Geromel, J. Bernussou, and M.C. deOliveira, ``H2-norm optimization with constrained dynamic output feedback controllers: decentralized and reliable control', IEEE Trans. Automat. Contr., vol. 44, no. 7, pp. 1449--1454, July 1999.
[18]S.G. Cao, N.W. Rees, and G. Feng, ``Analysis and design of fuzzy control systems using dynamic fuzzy state space models', IEEE Trans. Fuzzy systems, vol. 7, pp. 192--200, 1999.
[19]G. Feng and J. Ma, ``Quadratic stabilization of uncertain discrete-time fuzzy dynamic system', IEEE Trans. Circuits and Systems-I: Fundamental theory and Applications, vol. 48, no. 11, pp. 1137--1344, 2001.
[20]G. Feng, ``Approach to quadratic stabilization of uncertain fuzzy dynamic system', IEEE Trans. Circuits and Systems-I: Fundamental theory and Applications, vol. 48, no. 6, pp. 760--769, 2001.
[21]D.S. Berstein and W.M. Haddad, ``LQG control with an H∞ performance bound: a Riccati equation approach', IEEE Trans. Automat. Contr., vol. 34, no. 3, pp. 293--305, Mar. 1989.
[22]W.M. Haddad and D.S. Berstein, ``Generalized Riccati equations for the full- and reduced-order mixed-norm H2/H∞ standard problem', Syst. & Cont. Lett., vol. 14, pp. 185--197, 1990.
[23]J.Li, D.Niemann, H.O. Wang, and K. Tanaka, ``Parallel distributed compensation for Takagi-Sugeno fuzzy models: multiobjective controller design',in Proc. of American Control Conf., San Diego CA., June 1999, pp. 1832--1836.
[24]C. Scherer, P. Gahinet, and M. Chilali, ``Multiobjective output-feedback control via LMI optimization', IEEE Trans. Automat. Contr., vol. 42, no. 7, pp. 896--911, July 1997.
[25]H.-J. Kang, C.Kwon, Y.-H. Yee, and M. Park, ``L2 robust stability analysis for the fuzzy feedback linearization regulator', in Proc. of the 6th IEEE Int'l Conf. on Fuzzy Systems, vol. 1, pp. 277--280, 1997.
[26]H.-J. Kang, C.Kwon, Y.-H. Yee, and M. Park, ``Robust stability analysis and design method for the fuzzy feedback linearization regulator', IEEE Trans. Fuzzy systems, vol. 6, no. 4, pp. 464--472, Nov. 1998.
[27]K. Kiriakidis, A. Grivas, and A. Tzes, ``Quadratic stability analysis of the Takagi-Sugeno fuzzy model', Fuzzy Sets and Systems, vol. 98, pp. 1--14, 1998.
[28]M.C.M. Teixeira and S.H. Zak, ``Stabilizing controller design for uncertain nonlinear systems using fuzzy models', IEEE Trans. Fuzzy systems, vol. 7, no. 2, pp. 133--142, Apr. 1999.
[29]S.G. Cao, N.W. Rees, and G. Feng, ``Quadratic stability anaiysis and design of continous fuzzy control systems', Int'l. Journal on Systems Science, vol. 27, no. 2, pp. 193--200, 1996.
[30]H.J. Lee, J.B. Park, and G. Chen, ``Robust fuzzy control of nonlinear systems with parametric uncertainties', IEEE Trans. Fuzzy Systems, vol. 9, no. 2, pp. 369--379, April 2001.
[31]K. Kiriakidis, ``Robust stabilization of the Takagi-Sugeno fuzzy model via bilinear matrix inequalities', IEEE Trans. Fuzzy Systems, vol. 9, no. 2, pp. 269--277, April 2001.
[32]K. Tanka, T. Ikeda, and H.O. Wang, ``Robust stabilization of a class of uncertain nonlinear systems via fuzzy control: quadratic stabilizability, H∞ control theory, and linear matrix inequalities', IEEE Trans. Fuzzy systems, vol. 4, no. 1, pp. 1--13, Feb. 1996.
[33]K. Tanaka, T. Hori, and H.O. Wang, ``New robust and optimal designs for Takagi-Sugeno fuzzy control systems', in Proc. of 1999 IEEE Int'l Conf. on Control Appl., pp. 415--420, 1999.
[34]S.G. Cao, N.W. Rees, and G. Feng, ``H∞ control of nonlinear continous-time systems based on dynamical fuzzy models ', Int'l. Journal on Systems Science, vol. 27, no. 9, pp. 821--830, 1996.
[35]S.G. Cao, N.W. Rees, and G. Feng, ``H∞ control of uncertain fuzzy continous-time systems', Fuzzy Sets and Systems, vol. 115, pp. 171--190, 2000.
[36]G. Feng, S.G. Cao, N.W. Rees, C.M. Cheng, and J. Ma, ``H∞ control of continous time fuzzy dymanic systems', IEEE Int'l. Conf. Fuzzy systems, vol. 2, pp. 1141--1146, 1997.
[37]Z. Han and G. Feng, ``State feedback H∞ controller design of fuzzy dymanic systems using LMI techniques', in Proc. of IEEE World Congress on Computational Intelligence, Anchorange, AK, vol. 1, pp. 538--544, May. 1998.
[38]Z. Han, G. Feng, and N. Zhang, ``Dynamic output feedback H∞ controller design of fuzzy dynamic systems using LMI techniques', in Proc. of Second International Conference on Knowledge-Based Intelligent Electronic Systems, vol. 2, pp. 343--352, 1998.
[39]A. Jadbabaie, M. Jamshidi, and A. Titli, ``Guaranteed-cost design of continous-time Takagi-Sugeno fuzzy controller via linear matrix inequalities', in Proc. of IEEE World Congress on Computational Intelligence, Anchorange, AK, vol. 1, pp. 268--273, May. 1998.
[40]S.-K. Hong and R. Langari, ``Synthesis of an LMI-based fuzzy control system with guaranteed optimal H∞ performance', in Proc. of IEEE World Congress on Computational Intelligence, Anchorange, AK, vol. 1, pp. 422--427, May. 1998.
[41]B.S. Chen, C.S. Tseng, and H.J. Uang, ``Mixed H2/H∞ fuzzy output feedback control design for nonlinear dynamic systems: an LMI approach', IEEE Trans. Fuzzy systems, vol. 8, no. 3, pp. 249--265, June 2000.
[42]Y.Y. Cao and P.M. Frank, ``Robust H∞ disturbance attenuation for a class of uncertain discrete-time fuzzy systems', IEEE Trans. Fuzzy Systems, vol. 8, no. 4, pp. 406--415, August 2000.
[43]K.R. Lee, E.T. Jeung, and H.B. Park, ``Robust fuzzy H∞ control of uncertain nonlinear systems via state feedback: an LMI approach', Fuzzy Sets and Systems, vol. 120, pp. 123--134, 2001.
[44]S. Boyd, L.E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, PA., 1994.
[45]J.C. Geromel and M.C. deOliveira, ``H2 and H∞ robust filtering for convex bounded uncertain systems', IEEE Trans. Automat. Contr., vol. 46, no. 1, pp. 100--107, Jan. 2001.
[46]K. Zhou, Essentials of Robust Control, Prentice-Hall, Upper Saddle River, NJ., 1998.
[47]H.D. Tuan, P. Apkarian, T. Narikiyo, and Y. Yamamoto, ``New fuzzy control model and dynamic output feedback parallel distributed compensation', IEEE Trans. Fuzzy Systems, 2002, submitted for publication.
[48]K. Tanaka and H.O. Wang, Fuzzy Control Systems Design: A Linear Matrix Inequality Approach, John Wiley & Sons, Inc., New York, NY, 2001.
[49]J.C. Lo and S.W. Hou, ``Generalized H2 control for fuzzy systems with LFT framework', in Proc. 10th Nat'l Conf. Fuzzy Theory and Appl., Shinchu, TW, November 2002, pp. 19--22.
指導教授 羅吉昌(Ji-Chang Lo) 審核日期 2003-6-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明