<u>Instructions</u>: Answer the following questions. Make and state your own assumptions for questions where the information is not sufficient for you to solve them. For example, if you need the corresponding p-value of a normally distributed random variable evaluated at 2.5, you may indicate the value as, say, $Pr(x \ge 2.5)$, where $x \sim \mathcal{N}(0, 1)$.

1. (40 %) Let U(a,b) denote a uniform distribution whose values range between a and b. A random variable (r.v.) y is defined as follows:

$$y = sx_1 + (1-s)x_2$$

where the r.v. s has a Bernoulli distribution, which takes the value of 1 with probability $\frac{1}{3}$; x_1 and x_2 are two random variables having uniform distributions (and $x_1 \sim U(-2,1)$ and $x_2 \sim (0,3)$). s, x_1 and x_2 are independent. That is, there is a probability of $\frac{1}{3}$ that the r.v. is generated from U(-2,1) and a probability of $\frac{2}{3}$ that the r.v. is from

- (a) Calculate the mean and variance of y.
- (b) Given that y = 0.5, what is the probability that y is generated from U(-2,1).
- (c) Calculate the probability that y is greater than $\frac{1}{2}$, i.e., $Pr(y > \frac{1}{2})$.
- (d) If $y = \frac{1}{3}x_1 + \frac{2}{3}x_2$, what is the probability that y is greater than $\frac{1}{2}$, i.e., $Pr(y > \frac{1}{2})$?
- 2. (10%) If (x_1, x_2) are a random sample from a Bernoulli distribution, , which takes the value of 1 with probability p. Suppose you are asked to test $H_0: p = \frac{1}{2}$ against the alternative hypothesis $H_0: p \neq \frac{1}{2}$, and you decide to reject the null hypothesis whenever $|\frac{1}{2}(x_1 + x_2) \frac{1}{2}| \geq \frac{1}{6}$. What is your type I error?
- 3. (25%) In a certain population the random variable Y has variance equal to 360. Two independent random samples, each of size 20, are drawn. The first sample mean is used as the predictor of the second sample mean.
 - (a) (15%) Calculate the expectation, expected square, and variance, of the prediction error.
 - (b) (10%) Approximate the probability that the prediction error is less than 12 in absolute value.
- (25%) The random variable X has the power distribution on the interval [0, 1]. That is, the pdf of X is

$$f(x;\theta) = \theta x^{\theta-1}$$
 for $0 \le x \le 1$,

with $f(x; \theta) = 0$ elsewhere. The parameter θ is unknown. Consider random sampling, sample size n.

- (a) (15%) Show that the maximum likelihood estimator of θ is $T = 1/\overline{Y}$, where $Y = -\log X$. ("log" denotes natural logarithm.)
- (b) (10%) Find the asymptotic distribution of T, in terms of θ and n only.