博碩士論文 90343003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:149 、訪客IP:18.191.147.190
姓名 莊士鋒(Shih-Feng Chuang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 添加鐵、鉛、銅元素對鋁基複合材料性質之影響
(Effect of Fe, Pb and Cu additives on the properties of Al matrix composites)
相關論文
★ 非破壞性探討安定化熱處理對Al-7Mg鍛造合金微結構、機械與腐蝕性質之影響★ 非破壞性探討安定化熱處理對Al-10Mg鍛造合金微結構、機械與腐蝕性質之影響
★ 冷加工與熱處理對AA7055鍛造型鋁合金微結構與機械性質的影響★ 冷抽量對AA7055(Al-Zn-Mg-Cu)-T6態合金腐蝕性質和微結構之影響
★ 熱力微照射製作絕緣層矽晶材料之研究★ 分流擠型和微量Sc對Al-5.6Mg-0.7Mn合金微結構及熱加工性之影響
★ 銀對於鎂鎳儲氫合金吸放氫及電化學性質之研究★ 氧化物催化劑對亞共晶Mg-Ni合金之儲放氫特性研究
★ 熱處理對7050鋁合金應力腐蝕與含鈧鋁薄膜特性之影響研究★ Ti-V-Cr與Mg-Co基BCC儲氫合金性質研究
★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究★ 銅、鎂含量與熱處理對Al-14.5Si-Cu-Mg合金拉伸、熱穩定與磨耗性質之影響
★ 恆溫蒸發熔煉鑄造製程合成鎂基介金屬化合物及其氫化特性之研究★ 無電鍍鎳多壁奈米碳管對Mg-23.5wt.%Ni共晶合金儲放氫特性之影響
★ 微量Sc對A356鑄造鋁合金機械性質之影響★ 熱處理對車用鋁合金材料熱穩定性與表面性質之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以擠壓鑄造法製作純Al、A356、A356+0.8Fe三種Al基Nd-Fe-B複合磁石,以探討Fe元素對複合磁石之微結構、機械性質及磁性質的影響,並以熱壓燒結法製作Al-Si-Cu-Pb複合材料,以探討添加Pb、Cu元素對其微結構、硬度、磨耗、腐蝕及磨耗腐蝕等性質的影響。
由實驗結果得知,三種Al基Nd-Fe-B複合磁石在相同的體積分率(72±1%)下,純Al基地之Nd-Fe-B複合磁石之反應層最為明顯,隨著Al基地中Fe含量的增加,反應層厚度相對減少,而在A356+0.8%Fe合金基地之Nd-Fe-B複合磁石中,其反應層最少。三種高體積分率之複合磁石在抗彎曲強度、硬度等機械性質上,不因Al基地的不同而有顯著的差異。在磁性質方面,隨著Al基地中Fe含量的增加,Nd-Fe-B複合磁石的殘留磁束密度Br值由0.51 T增加到0.66 T,而磁能積(BH)max由36.8 kJ/m3增加到63.2 kJ/m3,且不影響複合磁石之本質矯頑磁力iHc,幾乎與原Nd-Fe-B磁粉相同。
以熱壓燒結法製作Al-20Si基複合材料,添加5或10 wt%的Pb以及3 wt%的Cu元素,在無潤滑情形下進行磨耗試驗,並在3.5 wt%氯化鈉(NaCl)水溶液中(pH=6.7)進行磨耗腐蝕試驗。
結果顯示,隨Pb的添加量增加,Al-Si-Pb及Al-Si-Cu-Pb複合材料的乾磨耗量降低,添加Cu可提高Al-Si複合材料的硬度,並降低乾磨耗量。複合材料的腐蝕電位Ecorr,無論在熱壓燒結或熱處理後,皆因Cu的添加而上升,並隨Pb的添加量增加而下降。腐蝕電流密度icorr在熱壓燒結後,因Pb與Cu的添加而增加,在熱處理後Al-Si-Cu及Al-Si-Cu-Pb複合材料的腐蝕電流密度icorr降低。添加Pb元素可提高Al-Si及Al-Si-Cu複合材料的磨耗腐蝕性質,在本研究中,同時添加Pb與Cu的Al-Si-Cu-Pb複合材料具有最佳的乾磨耗及磨耗腐蝕性質。
摘要(英) This work studies the effect of Fe on the microstructure, mechanical and magnetic properties of three aluminum metal matrix Nd-Fe-B composite magnets. The composite magnets are prepared by squeezing three aluminum alloys (pure Al, A356 alloy and A356+0.8%Fe alloy) into preformed Nd-Fe-B magnetic powder.
The results indicate that the pure Al-matrix Nd-Fe-B composite magnet has the most active reaction layer. However, the thickness of the reaction layer decreases as the Fe content in the matrix increases. Increasing the Fe content in aluminum matrix increases the remanence (Br) of the composite magnets from 0.51 to 0.66 T, and increases the energy product ((BH)max) from 36.8 to 63.2 kJ/m3. The intrinsic coercivity (iHc) of these composite magnets is nearly the same as the original magnetic powder.
Dispersed lead and copper particles in aluminum-silicon matrix composites were fabricated by hot pressing. Effects of the addition of 5 wt.% and 10 wt.% lead and 3 wt.% copper particles on wear and wear-corrosion properties of Al-20Si composites have been evaluated. Wear is performed at ambient without lubricant, and wear-corrosion is executed in 3.5 wt.% NaCl solution (pH 6.7).
The results show that the dry wear loss of Al-Si-Pb and Al-Si-Cu-Pb composites decreased as the Pb content increased. The hardness increased and the dry wear loss was reduced with the addition of Cu particles. The corrosion potential, Ecorr, increased with the presence of Cu and with the decrease of the Pb content, both for pressed and heat-treated conditions. The corrosion current density, icorr, increased with Cu and Pb incorporation into composites in the as pressed state, and decreased after heat treatment for Al-Si-Cu and Al-Si-Cu-Pb composites. The wear-corrosion property was improved by the addition of the Pb phase to Al-Si and Al-Si-Cu composites. Al-Si-Cu-Pb composites exhibited better dry wear and wear corrosion resistance than other composites in this study.
關鍵字(中) ★ 複合磁石
★ 鋁矽複合材料
★ 鐵
★ 銅
★ 鉛
★ 擠壓鑄造
★ 熱壓燒結
★ 磁性質
★ 磨耗
★ 腐蝕
★ 釹鐵硼
★ 金屬基複合材料
關鍵字(英) ★ Squeeze
★ Nd-Fe-B
★ MMC
★ Composite magnets
★ Hot pressing
★ Magnetic properties
★ Wear
★ Corrosion
★ Cu
★ Pb
★ Fe
★ Al-Si composite
論文目次 中文摘要 I
ABSTRACT III
謝誌 V
目錄 VI
圖目錄 X
表目錄 XIII
第一章 前言 1
1.1 研究背景與文獻回顧 1
1.1.1 金屬基複合材料 1
1.1.2 釹鐵硼(Nd-Fe-B)複合磁石 1
1.1.3 鋁-矽基複合材料 2
1.2 研究目的 4
第二章 基礎理論 5
2.1 磁性材料簡介 5
2.1.1 磁性來源 5
2.1.2 硬磁材料 6
2.1.3 複合磁石 10
2.2 Al-Si基複合材料簡介 13
2.2.1 純鋁及鋁合金 13
2.2.2 Al-Si合金 15
2.2.3 添加元素對Al-Si合金之影響 16
2.3 金屬基複合材料之磨耗性質 19
2.4 金屬基複合材料之腐蝕性質 25
2.4.1 伽凡尼腐蝕 30
2.4.2 間隙腐蝕 32
2.5 金屬基複合材料之磨耗腐蝕性質 34
第三章 Fe元素對擠壓鑄造Al基Nd-Fe-B複合磁石性質之影響 36
3.1 實驗方法 36
3.1.1 磁粉特性 36
3.1.2 預形體製作 37
3.1.3 複合磁石之製作 39
3.1.4 微結構分析 40
3.1.4-1 光學顯微鏡觀察 40
3.1.4-2 X-ray繞射分析 40
3.1.4-3 電子微探儀分析 41
3.1.5 機械性質測試 41
3.1.5-1 四點彎曲試驗 41
3.1.5-2 硬度量測 42
3.1.6 磁性質量測 42
3.2 結果與討論 43
3.2.1 複合磁石之顯微組織 43
3.2.2 機械性質測試結果 51
3.2.3 磁性質量測結果 53
第四章 Pb與Cu元素對熱壓燒結Al-Si複合材料磨耗及磨耗腐蝕
性質之影響 56
4.1 實驗方法 56
4.1.1 粉末配製 56
4.1.2 熱壓燒結 57
4.1.3 熱處理程序 58
4.1.4 物理性質檢驗 59
4.1.4-1 緻密度量測 59
4.1.5 機械性質測試 61
4.1.5-1 硬度試驗 61
4.1.5-2 乾磨耗試驗 61
4.1.6 電化學性質測試 63
4.1.6-1 腐蝕試驗 63
4.1.6-2 磨耗腐蝕試驗 65
4.1.7 微結構分析 66
4.2 結果與討論 67
4.2.1 微結構與硬度 67
4.2.1-1 緻密度量測結果 67
4.2.1-2 硬度試驗結果 69
4.2.2 乾磨耗試驗結果 75
4.2.3 腐蝕試驗結果 79
4.2.4 磨耗腐蝕試驗結果 85
第五章 結論 90
參考文獻 93
參考文獻 1. M. Taya and R. J. Arsenault, “Metal Matrix Composites—Thermomechanical Behavior”, Pergamom Press, Oxford., 1989, pp.1-5.
2. A. P. Sannino, H. J. Rack, “Dry sliding wear of discontinuously reinforced aluminum composites : review and discussion”, Wear, 189, 1995, pp.1-19.
3. J. J. Croat, J. F. Herbst, R. W. Lee and F. E. Pinkerton, J. Appl. Phys., 55, 1984, pp.2078.
4. B. M. Ma, J. W. Herchenroeder, B. Smith, M. Suda, D. N. Brown and Z. Chen: J. Magn. Magn. Mater., 239, 2002, pp.418–423.
5. S. Pandian, V. Chandrasekaran, G. Markandeyulu, K.J.L. Iyer, K.V.S. Rama Rao, “Effect of Co, Dy and Ga on the magnetic properties and the microstructure of powder metallurgically processed Nd–Fe–B magnets”, Journal of Alloys and Compounds, vol.364, 2004, pp.295–303.
6. R. S. Mottram, A. J. Williams, I. R. Harris, “Blending additions of cobalt to Nd16Fe76B8 milled powder to produce sintered magnets”, Journal of Magnetism and Magnetic Materials , Vol.217, 2000, pp.27.
7. R. S. Mottram, A. J. Williams, I. R. Harris, “Blending additions of aluminum and cobalt to Nd16Fe76B8 milled powder to produce sintered magnets”, Journal of Magnetism and Magnetic Materials, Vol.222, 2000, pp.305-313.
8. O. Filip, A .M. El-Aziz, R. Hermann, K. Mummert, L. Schultz, “Effect of Al additives and annealing time on microstructure and corrosion resistance of Nd–Fe–B alloys”, Materials Letters, Vol.51, 2001, pp.213–218.
9. L. Schultz, A. M. El-Aziz, G. Barkleit, K. Mummert, “Corrosion behaviour of Nd–Fe–B permanent magnetic alloys”, Materials Science and Engineering A, Vol.267, 1999, pp.307–313.
10. J. F. Herbst and J. J. Croat, “Neodymium-iron-boron permanent magnets”, Journal of Magnetism and Magnetic Materials, 100,1991 , pp.57-78.
11. Hamano, “Overview and outlook of bonded magnets in Japan”, Journal of Alloys and Compounds, vol.222, 1995, pp.8-12.
12. YU. M. Rabinovich, V. V. Sergeev, A. D. Maystrenko, V. Kulakovsky, S. Szymura and H. Baia, “Physical and mechanical properties of sintered Nd-Fe-B type permanent magnets, Intermetallics”, vol.4, 1996, pp.641-645.
13. N. Rolinson, M. M. A. shraf and I. R. Harris, “New developments in bonded Nd-Fe-B magnets”, Journal of Magnetism and Magnetic Materials, Vol.80, 1989, pp.93-96.
14. R. W. Lee, “Hot-pressed neodymium-iron-boron magnets”, Applied Physics Letters, Vol.46, 1985, pp.790-791.
15. S. Guruswamy, M. K. McCarter and J. E. Shield, “Explosive compaction of magnequench Nd-Fe-B magnetic powder”, Journal of Applied Physics, Vol.79, No.8, 1996, pp.4851-4853.
16. J. F. Ji and C. G. Chao, “A novel technique for manufacturing metal-bonded Nd-Fe-B magnets by squeeze casting”, Metallurgical and materiala transcation A, Vol.33A, 2002, pp.637-646.
17. G. Timmermans, L. Froyen, “Fretting wear behaviour of hypereutectic P/M Al-Si in oil enviroment”, Wear, 230, 1999, pp.105-117.
18. Ashok Sharma, T. V. Rajan, “Bearing characteristics of cast leaded aluminium-silicon alloys”, Wear, 197, 1996, pp.105-114.
19. D. Nath, R. Bolls, S. Chandra: Powder Metall. Int., 24, 1992, pp. 84-87.
20. R. G. Wendt, W. C. Moshier, B. Shaw, P. Miller, D. L. Olson, “Corrosion-Resistance aluminum matrix for graphite-aluminum composites”, Corrosion, Vol.50, No.11, 1994, pp.819-826.
21. Hang-Moule Kim, Taek-Soo Kim, C.Suryanarayana, Byong-Sun Chun, “Microstructure and wear characteristics of rapidly solidified Al–Pb–Cu alloys”, Materials Science and Engineering A, Vol.287, 2000, pp.59-65.
22. J. Z. Zhao, S. Drees, L. Rathke, “Strip casting of Al–Pb alloys — a numerical analysis”, Materials Science and Engineering A, Vol.282, 2000, pp.262-269.
23. M. Zhu, Y. Gao, C. Y. Chung, “Improvement of the wear behaviour of Al–Pb alloys by mechanical alloying”, Wear, 242, 2000, pp.47-53.
24. S. N. Ojha, A. K. Tripathi, S. N. Singh: Inter. Powder. Metallurgy., 25, 1993, pp.65.
25. S. Mohan, V. Agarwala, S. Ray: Mater. Trans. JIM., 33, 1992, pp.1057-1062.
26. R. Grag, S. Mohan, V.Agarwala, R. C. Agarwala: Z. Metallkd., 84, 1993, pp.721.
27. M. L. Mackay: Met. Prog., 111, 1977, pp.32.
28. P. J. Ward, H. V. Atkinson, P. R. G. Anderson, L. G. Elias, B. Garcia, L. Kahlen, J. -M. Rodriguez-Ibabe, “Semi-solid processing of novel MMCs based on hypereutectic aluminium-silicon alloys”, Acta Materialia, Vol.44, 1996, pp.1717-1727.
29. S. K. Srivastava, S. Mohan, V. Agarwala, R. C. Agrawala: Metall. Mater, Trans., 25A, 1994, pp.851.
30. L. H. Hihara and R. M. Latanision: Int. Mater. Rev., 39, 1994, pp. 245-264.
31. T. F. Wu, Z. W. Qiu, S. L. Lee, Z. G. Lee and J. C. Lin, ”Effects of graphite on wear and corrosion behaviour of SiCp-reinforced copper matrix composites formed by hot pressing”, Corrosion Science, Engineering and Technology, Vol.39, iss.3, 2004, pp.229-235.
32. C. J. Tseng, Sheng-Long Lee, Ten-Fu Wu and Jing-Chie Lin, “Effects of Fe Content on Microstructure and Mechanical Properties of A206 Alloy”, Materials Transactions JIM, Vol.41, No.6, 2000, pp.708-713.
33. William D. Callister, Jr, “Materials science and engineering an introduction”, 4rd ed., John Wiley & Sons, Inc., 1996, pp.659-687.
34. 張文成,洪英彰,”磁性材料”,粉末冶金技術手冊,中華民國粉末冶金協會, 1994, pp.458-484.
35. V. Panchanathan, ”Magnequench magnets status overview”, JMEPEG, 4, 1995, pp.423-429.
36. D. Rodrigues, G. V. Concilio, F. Landgraf and A. C. Zanchetta, “Proc.of the 14th internation workshop Rare Earth Magnets and their application”, 1996, pp.580-589.
37. John E. Hatch, “Aluminum: properties and physical metallurgy”, ASM International, Metals Park, Ohio, 1984, pp.320-350.
38. J. R. Davis & Associates, “ASM specialty handbook: aluminum and aluminum alloys”, ASM International Materials Park, Ohio, 1994, pp.89-120.
39. J. E. Gruzleski and B. M. Closset, “The treatment of liquid aluminum-silicon alloys”, AFS Inc., Illinois, 1990, p.13.
40. J. R. Davis & Associates, “ASM specialty handbook: aluminum and aluminum alloys”, ASM International Materials Park, Ohio, 1994, pp.555.
41. J. E. Hatch, ”Aluminum: properties and physical metallurgy”, London, Butterwordths and Co., Ltd, 1976, pp.346-347.
42. J. L. Jorstad, “Hypereutectic Al-Si casting alloys: 25 years,what’s next” AFS Transaction, V104, 1996, pp.669-671.
43. R. W. Bruner, “Metallurgy of die casting alloys” , SDCE. Detroit. MI, 1976, pp.25.
44. F. H. Samuel, A. M. Samuel, “Effect of magnesium content on the ageing behaviour of water-chilled Al-Si-Cu-Mg-Fe-Mn(380) alloy castings”, Journal of Materials Science, V30, 1995, pp.2531-2510.
45. L. F. Mondolfo, “Aluminum alloys: structure and properties”, London, Butterworth’s, Ltd., 1976, pp.253-266.
46. K. Hono, N. Sano, S. S. Babu, R. Okano and T. Sakurai, “Atom probe study of the precipitation process in Al-Cu-Mg-Ag alloys”, Acta Metall. Mater., Vol.41, 1993, pp.829-838.
47. B. K. Prasad, “Dry sliding wear response of some bearing alloys as influenced by the nature of microconstituents and sliding conditions”, Metallurgical and Materials Transactions A, Vol.28A, 1997, pp.809-815.
48. C. S. Sivaramakrishnan, R. K. Mahanti, R. Kumar, “The dispersion of lead and graphite in aluminum alloys for bearing applications”, Wear, 96, 1984, pp.121-134.
49. A. D. Sarkar, J. Clarke, “Wear characteristics, frictions and surface topography observed in the dry sliding of as-cast and aging-hardening Al-Si alloys”, Wear, 75, 1982, pp.71-85.
50. Szu Yin Yu, Hitoshi Ishii, Keiichiro Tohgo, Young Tae Cho, Dongfeng Diao, “Temperature dependence of sliding wear behavior in SiC whisker or SiC particulate reinforced 6061 aluminum alloy composite”, Wear, 213, 1997, pp.21-28.
51. S. C. Tjong, K. C. Lau, “Properties and abrasive wear of TiB2/Al-4%Cu composites produced by hot isostatic pressing”, Composites Science and Technology, 59, 1999, pp.2005-2013.
52. Rong Chen, Akira Iwabuchi, Tomoharu Shimizu, Hyung Seop Shin, Hidenobu Mifune, “The sliding wear resistance behavior of NiAl and SiC particles reinforced aluminum alloy matrix composites”, Wear, 213, 1997, pp.175-184.
53. Jian Zhang, Degui Zhu, Liu Yang, Shizhuo Li, “Wear behavior of lanxide Al2O3/Al composite”, Wear, 215, 1998, pp.34-39.
54. ASTM G40-82, “Annual book of ASTM standards”, Vol.03.02, 1984, pp.239.
55. A. P. Sannino and H. J. Rack, “Dry sliding wear of discontinuously reinforced aluminum composites: review and discussion”, Wear, Vol.189, 1995, pp.1-19.
56. K. G. Budinski, “Surface engineering for wear resistance”, Prentice Hall, 1988, pp.16-18.
57. K. H. Z. Gahr, “Microstructure and wear of materials”, Chapter 6 Sliding wear, Elsevier Science Publisher, Amsterdam, Netherlands, 1987, pp.351-495.
58. D. A. Jones, “Principles and prevention of corrosion”, 2rd ed., Prentice Hall International, Inc., 1997, pp.44-524.
59. J. R. Davies, “ASM specialty handbook : Aluminum and Aluminum alloys”, William W. Scott, Jr., 1993, pp.579-580.
60. M. G. Gontana, “Corrosion engeering”, 3rd ed., McGraw-Hill Inc., 1986, pp.41-55.
61. C. K. Fang, C. C. Huang, T. H. Chuang, “Synergistic effects of wear and corrosion for Al2O3 particulate-reinforced 6061 aluminum matrix composites”, Metallurgical and Materials Transactions A, Vol.30A, 1999, pp.643-651.
62. C. K. Lee, H. C. Shih, “Structure and corrosive wear resistance of plama-nitrided alloy steels in 3% sodium chloride solutions”, Corrosion Vol.50, No.11, 1994, pp.848-856.
63. I. Iwasaki, S. C. Riemer, J. N. Orlich, “Corrosive and abrasive wear in ore grinding”, Wear, 1985, Vol.103, pp.253-267.
64. S. W. Watson, B. W. Madsen, S. D. Cramer, “Wear-Corrosion study of white cast irons”, Wear, Vol.181-183, 1995, pp.469-475.
65. Y. F. Lee and S. L. Lee, “Effects of Al additive on the mechanical properties of silicon reinforced Cu matrix composites”, Scripta Materialia., vol.41, No.7, 1999, pp.773-778.
66. Y. F. Lee, S. L. Lee, C. H. Huang and C. K. Lee, “Effects of Fe additive on properties of Si reinforced copper matrix composites fabricated by vacuum infiltration”, Powder Metallurgy, Vol.44, No.4, 2001, pp.339-1343.
67. S. L. Lee, Y. H. Tan, S. N. Yie and J. C. Lin, “Effect of preaging on precipitation hardening in Al-Si-Mg alloys”, Scand. Joural Of Metallurgy, Vol.27, 1998, pp.112-115.
68. P. S. Wang, S. L. Lee, C. Y. Yang and J. C. Lin, “Effects of Be and nonequilibrium heat treatment on mechanical properties of 319.0 alloys with 1.0% Fe”, Materials Science and Technology, Vol.20, 2004, pp.539-545.
69. C. Y. Yang, S. L. Lee, C. K. Lee and Y. L. Lin, “Effects of Be and Fe content on the mechanical and corrosion behaviors of A357 alloys”, Materials Chemistry & Physics, Vol.93, 2005, pp.412-419.
70. L. F. Mondolfo: “Aluminum alloys: structure and properties”, Butterworths, London, 1976, pp.282-289.
71. M. G. Garrell, A. J. Shih, B. M. Ma, E. L. Curzio and R. O. Scattergood, “Mechanical properties of polyphenylene-sulfide (PPS) bonded Nd–Fe–B permanent magnets”, Materials Science and Engineering A, Vol.359, 2003, pp.375-383.
72. M. G. Garrell, B. M. Ma, A. J. Shih, E. L. Curzio and R. O. Scattergood, “Mechanical properties of Nylon bonded Nd–Fe–B permanent magnets”, Journal of Magnetism and Magnetic Materials, vol.257, 2003, pp. 32-43.
73. L. F. Mondolfo: “Aluminum Alloys: Structure and Properties”, Butterworths, London, 1976, pp.99.
74. ASTM Standard B328-96, Vol.02.05, ASTM, Philadelphia, PA, USA, 1999.
75. ASTM Standard: G 69-97, Vol. 03.02., ASTM, Philadelphia, PA, USA, 1999.
76. D. Y. Ying, D. L. Zhang, “Solid-state reaction between Cu and Al during mechanical alloying and heat treatment”, Journal of Alloys and Compounds, 311, 2000, pp.275-282.
77. T. G. Nieh and R. G. Karlac, Scripta Metall., 18, 1984, pp. 25.
78. T. Christman and S. Suresh, Brown University Report No. NSF-ENG-8451092/1/87, 1987.
79. I. A. Ibrahim, F. A. Mohamed, E. J. Lavernia, J. Mater. Sci., 26, 1991, pp.1137-1156.
80. S.Long, O. Beffort, C.Cayron, C. Bonjour, “Microstructure and mechanical properties of a high volume fraction SiC particle reinforced AlCu4MgAg squeeze casting”, Materials Science and Engineering A, Vol.269, 1999, pp.175-185.
81. K. I. Moore, D. L. Zhang, B. Cantor, “Solidification of Pb particles embedded in Al”, Acta metal. Mater., vol.38, No.7, 1990, pp.1372-1342.
82. Ashok Sharma, T. V. Rajan, “Bearing characteristics of cast leaded aluminum- silicon alloys”, Wear, 197, 1996, pp.105-114.
83. J. Clarke, A. D. Sarkar, “Topographical features observed in a scanning electron microscopy study of aluminum alloy surface in sliding wear”, Wear, 69, 1981, pp.1-23.
84. Hang-Moule Kim, Taek-Soo Kim, C. Suryanarayana, Byong-Sun Chun, “Microstructure and wear characteristics of rapidly solidified Al-Pb-Cu alloys”, Materials Science and Engineering A, Vol.287, 2000, pp.59-65.
指導教授 李勝隆(Sheng-Long Lee) 審核日期 2007-1-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明