博碩士論文 90343005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:156 、訪客IP:3.149.213.209
姓名 張添昌(Tien-Chan Chang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 鎂鋰鋅合金之晶粒細化與超塑性研究
(Grain Refining and Superplasticity of Mg-Li-Zn Alloys)
相關論文
★ 使用實驗計劃法求得印刷電路板微鑽針最佳鑽孔參數★ 滾針軸承保持架用材料之電鍍氫脆研究
★ 強制氧化及熱機處理對鎂合金AZ91D固相回收製程之研究★ 滾針軸承保持架圓角修正之有限元素分析
★ 透過乾式蝕刻製作新型鍺全包覆式閘極電晶體元件★ 窗型球柵陣列構裝翹曲及熱應力分析
★ 冷軋延對ZK60擠製材的拉伸與疲勞性質之影響★ 熱引伸輔助超塑成形製作機翼整流罩之設計及分析
★ 超塑性鋁合金5083用於機翼前緣整流罩之研究★ 輕合金輪圈疲勞測試與分析
★ 滾針軸承保持架之有限元分析★ 鎂合金之晶粒細化與超塑性研究
★ 平板式固態氧化物燃料電池穩態熱應力分析★ 固態氧化物燃料電池連接板電漿鍍膜特性研究
★ 7XXX系鋁合金添加Sc之顯微組織與機械性質研究★ 高延性鎂合金之特性及成形性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在全球性輕量化及重環保之潮流下,鎂合金已成為新時代材料的寵兒,鎂及鎂合金已廣泛地作為結構及非結構材料。鎂合金之比剛性,為目前結構用金屬最高者,鎂合金具備吸收電磁波防電磁干擾、散熱快及吸震耐摔等性能,因而大受3C產業之青睞。鎂合金添加鋰元素,除可降低鎂合金之密度,符合輕量化之要求,亦可大幅改善鎂合金之加工性質。
近幾年來,一種嶄新的晶粒細化技術,即等通道彎角擠製(ECAE)技術,被廣泛的研究應用於許多鎂合金材料上,但是對於Mg-Li-Zn合金的研究卻未多見。本研究針對五種Mg-Li-Zn合金添加不同合金元素,分析其微結構、耐蝕性及機械性質之不同。施以ECAE實驗,以探討各種ECAE製程參數對擠製後微結構及機械性質之影響。
Mg-Li-Zn合金之α相主要提供強度及硬度,而β相主要提供延展性。Mg-Li-Zn合金添加Mn,雖會增加耐蝕性,但也造成強度降低及伸長率增加。Mg-Li-Zn合金添加Al量,不但會增進大氣中之耐蝕性,而且會使強度增加,而伸長率卻會減少。Mg-Li-Zn合金經ECAE擠製4道次,以900-100℃-Bc4擠製Mg-9Li-1Zn合金之抗拉強度增加最多(+41.8MPa),而伸長量減少量卻最少(-25﹪)。Mg-Li-Zn合金經ECAE加工,若採用同樣擠製方位C及擠製4道次之條件下,LZ111合金之α相微硬度增加幅度22.4%為五種Mg-Li-Zn合金中最大,LZM910合金之β相微硬度之增加幅度28%為最大。實驗材料五種Mg-Li-Zn合金β相晶粒之細化效果,均相當不錯,甚至可達次微米之晶粒。因實驗材料主要透過ECAE加工,將其α相予以分斷及細化於β相中,以阻止β相中之差排移動,而達到分散強化之目的。於高溫拉伸測試時,細化之α相亦可阻止β相晶粒之成長,可增進材料之超塑性行為。利用TEM及EDS分析確認LZ111合金經ECAE加工試棒中有MgLiZn化合物(FCC結構)及其上之退火雙晶,其雙晶面為(111)面;LZ91合金經ECAE加工試棒中有MgZn2化合物(HCP結構);LAZM9310合金經ECAE加工試棒中有ZnO化合物(HCP結構)。LZ91合金經900-100℃-Bc8擠製試棒,於250℃及1×10-4s-1條件下,進行高溫超塑性拉伸測試,可獲得350%之最高伸長率。LZ91鎂合金於100℃時效10小時有硬度頂峰值,以XRD檢測發現α(0002)主頂峰之額外隆起部份,推測為半穩定之 (MgLi2Zn)相。本研究發現LAZM9310合金於100℃時效10小時之β相有硬度頂峰值,推測為時效強化相AlLi析出物。
摘要(英) Magnesium and magnesium alloys are used in a wide variety of structural and nonstructural applications. It is commonly recognized that magnesium possesses poor formability because of its hexagonal close-packed structure. To make up for this shortcoming and further reduce weight, alloying magnesium with lithium of extremely low density, 0.534 g/cm3, can achieve both goals.
In recent years, the equal channel angular extrusion (ECAE) process is an innovative method to refine grain structure on many magnesium alloys. However, Mg-Li-Zn alloys were not much involved such that the relevant literatures are just two. Five Mg-Li-Zn alloys namely Mg-11%Li-1%Zn, Mg-9%Li-1%Zn, Mg-9%Li-1%Zn-0.2%Mn, Mg-9%Li-1%Zn-1%Al-0.2%Mn, and Mg-9%Li-3%Al-1%Zn-0.2%Mn were prepared. These alloys had been processed by equal channel angular extrusion (ECAE), and the subsequent mechanical properties and microstructures were studied. After ECAE process, the room temperature strength was significantly enhanced at a modest cost of elongation reduction.
The α phase mainly provides the strength and hardness on Mg-Li-Zn alloys and the β phase provides the ductility. In each of the Mg-Li-Zn alloy, the increase in Mn content raises the saltwater corrosion resistance and elongation but reduces the strength. The increase in Al content raises the air corrosion resistance and strength but reduces the elongation. From the results of these five Mg-Li-Zn alloys processed by ECAE, Mg-9Li-1Zn alloy processed under condition, 900-100℃-Bc4, shows the greatest increase in tensile strength about 41.8 MPa and the least decrease in elongation about 25%. With the same ECAE process, Mg-11%Li-1%Zn alloy shows the greatest increase in Micro-Vickers hardness of α phase about 22.4% and Mg-9%Li-1%Zn-0.2%Mn alloy shows the greatest increase in Micro-Vickers hardness of β phase about 28%. The microstructures of these five Mg-Li-Zn alloys were found out equiaxed subgrain structure and sub-micrometer grain size. The fine particles in Mg-11Li-1Zn alloy specimens processed under condition, 900-100℃-Bc4, had been identified by the TEM and EDS as the MgLiZn, which had been found out the annealing twins and (111) is twin plane. The fine particles in Mg-9Li-1Zn alloy specimens processed under condition, 900-100℃-Bc4, had been identified by the TEM and EDS as the MgZn2. The fine particles in LAZM9310 alloy specimens processed under condition, 900-175℃-C4, had been identified by the TEM and EDS as the ZnO. The grains in both α and β phases are recrystallized due to high strain that accumulated during ECAE processing and the fine recrystallized grains increases the grain boundary area, thereby enhancing grain boundary sliding and superplasticity. The specimens of LZ91 alloy processed under condition, 900-100℃-Bc8, were expected to show superplastic elongation and indeed the highest elongation was 350%, which was tested at 250℃ and initial strain rate of 1×10-4 s-1. All aged specimens of LZ91 alloy were checked by XRD and onlyα and β phases were obviously detectable showing peaks. The specimens treated at 50 ℃/100 hours and 100 ℃/10 hours had shown extra bump adjacent to the main peak ofα(0002). This is speculated to be the metastable (MgLi2Zn) phase. The micro hardness tests were done in all aged specimens of LAZM9310 alloy. The specimens treated at 100 ℃/10 hours had shown higher hardness of β phase. This is speculated to be the AlLi phase.
關鍵字(中) ★ 織構
★ 鎂鋰鋅合金
★ 等通道彎角擠製
★ 微結構
★ 超塑性
關鍵字(英) ★ Mg-Li-Zn alloys
★ Equal channel angular extrusion
★ Microstructure
★ Superplasticity
★ Texture
論文目次 表 目 錄 iii
圖 目 錄 iv
第一章 前言 1
1.1研究背景 1
1.2鎂合金之特色 2
1.3鎂合金熱處理之特點 3
第二章 理論探討與文獻回顧 4
2.1鎂之合金化特點 4
2.1.1 鋰元素對鎂合金之影響 4
2.1.2鋅元素對鎂合金之影響 5
2.1.3錳元素對鎂合金之影響 5
2.1.4鋁元素對鎂合金之影響 6
2.2 鎂合金晶粒細化之方法與理論 6
2.2.1鎂合金晶粒細化之影響 7
2.2.2晶粒細化的方法 7
2.2.3 ECAE簡介 8
2.2.4金屬材料再結晶之原理 12
2.3方位分布函數簡介 16
2.3.1 Eular Angle 與 Eular Space 17
2.3.2極圖與ODF 18
2.3.3方位分布函數(ODF)量測分析 18
2.4超塑性之簡介 20
2.4.1細晶粒超塑性 25
2.4.2內應力超塑性 27
2.4.3高應變速率超塑性及低溫超塑性 28
2.4.4其它機構 29
2.5 鎂合金晶粒細化方法、超塑性以及織構分析之相關研究 29
2.5.1滾軋方法 29
2.5.2等通道彎角擠製方法(ECAE) 32
2.5.3其他方法 35
2.6研究動機及目的 38
第三章 研究方法及其步驟 57
3.1實驗材料 57
3.2實驗設備 58
3.2.1 ECAE製程設備 58
3.2.2 ECAE實驗步驟 59
3.2.3機械性質測試 60
3.2.4微結構觀察 61
3.2.5織構分析 62
第四章 研究結果與討論 71
4.1 ECAE製程實驗前 71
4.1.1 LZ91鑄件之狀態 71
4.1.2常溫機械性質及微結構觀察 72
4.2 ECAE製程實驗 73
4.2.1擠製溫度之選定 73
4.2.2 ECAE製程實驗參數之選定 74
4.2.3巨觀分析 74
4.2.4常溫機械性質 75
4.2.5微結構觀察 80
4.2.6織構分析 87
4.3 ECAE製程實驗後之退火處理 90
4.3.1退火後之微硬度測試 90
4.3.2 退火後之金相觀察 91
4.4 超塑性之測試 92
4.4.1超塑性測試溫度之選定 93
4.4.2 超塑性測試之結果與討論 93
4.5 Mg-Li-Zn合金之時效處理 96
4.6 Mg-Li-Zn合金模擬海水腐蝕之實驗 97
第五章 結論 179
參考文獻 182
參考文獻 參考文獻
1.楊榮川, “鎂及其合金”,機械工程手冊3-金屬材料篇,2002年,第6-33~42頁。
2.ASM, “Magnesium alloys”, Metals Handbook 10th Edition, Vol. 2, 1990, pp. 455.
3.鍾自強、黃士宗,“鎂合金汽車油底殼壓鑄件開發”,中國工程師學會會刊,第七十七卷,第五期,民國93年10月,第8頁。
4.I. J. Polmear, “Overview magnesium alloys and applications”, Materials Science and Technology Vol. 10(1994), pp. 2.
5.L. A. Carapella, Met. Prog. 48( 1945) , pp.297.
6.J. A. Jensen and L. S. Chumbley, “Processing and mechanical properties of magnesium-lithium composites containing steel fibers”, Metallurgical and Transactions A Vol. 29A(1998), pp.863~873.
7.張永耀,“金屬熔銲學”,徐氏基金會,1976年,第134~170頁。
8.蔡幸甫,“鎂合金產業技術及市場發展趨勢專題調查”,工研院產業經濟與資訊服務中心科技專案成果,2001年。
9.C. H. Caceres, C. J. Davidson, J. R. Griffiths and C. L. Newton, “Effects of solidification rate and ageing on the microstructure and mechanical properties of AZ91 alloy”, Materials Science and Engineering A325(2002), pp. 344~355.
10.C. Shaw and H. Jones, “The contributions of different alloying additions to hardening in rapidly solidified magnesium alloys”, Materials Science and Engineering A226-228(1997), pp. 856~860.
11.ASM, “Magnesium alloys”, Metals Handbook 9th Edition, Vol. 6, 1985, pp. 425~434.
12.劉文勝,“AZ61鎂合金的疲勞性質與破壞分析”,中央大學機械工程研究所,碩士論文,2000年。
13.賴耿陽,“非鐵金屬材料”,復漢出版社,1998年,第174~191頁。
14.魏汝超,“鎂合金之熱機處理與退火處理的顯微組織研究”,台灣大學材料科學與工程學研究所,碩士論文,2003年。
15.ASM, “Magnesium alloys”, Metals Handbook 8th Edition, Vol. 8, 1976, pp. 314~319.
16.A. Bussiba, A. Ben Artzy, A. Shtechman, S. Ifergan and M. Kupiec, “Grain refinement of AZ31 and ZK60 Mg alloy-towards superplasticity studies”, Materials Science and Engineering A 302A(2001), pp.56~62.
17.G. Neite, K. Kubota, K. Higashi, and F. Hemann, Materials Science and Technology Vol. 8 VCH (1996), pp.113.
18.陳勇宏,“AZ31及AZ61鎂合金之晶粒細化與鈑片成形研究”,中央大學機械工程研究所,博士論文,2004年。
19.J. A. Chapman and D. V. Wilson, J. Inst. Metals 91 (1962-63), pp.35.
20.黃志青,“輕金屬細化技術近況”,工業材料,198期,2003,第114頁。
21.V. M. Segal, V.I. Reznikov, A.E. Drobyshevskiy and V.I. Kopylov, “Russian metallurgy”, (Engl. Transl.), Vol.1 (1981), pp.115.
22.J. Richert, M. Richert, Aluminum 62 (1986), pp.604.
23.M. Mabuchi, H. Iwasaki, K. Yanase and K. Higashi, Scripta Materialia Vol.36 (1997), pp.681~686.
24.M. Mabuchi, K. Ameyama, H. Iwasaki and K. Higashi, Acta Materialia Vol.47 (1999), pp.2047~2057.
25.W. H. Haung﹐L. Chang﹐P. W. Kao and C. P. Chang﹐Materials Science and Engineering A307 (2001), pp.113~118.
26.V. M. Segal﹐USSR Patent No. 575892 (1977).
27.Y. Iwahashi﹐J. Wang﹐Z. Horita﹐M. Nemoto﹐T. G. Langdon﹐Scripta Materialia Vol.35 (1996), pp.143~146.
28.K. Nakashima, Z. Horita, M. Nemoto and T.G. Langdon,” Influence of channel angle on the development of ultrafine grains in equal-channel angular extrusion”, Acta Materialia Vol. 46 No. 5 (1998), pp. 1589~1599.
29.A. Shan﹐I. G. Moon﹐H. S. Ko﹐J. W. Park﹐ Scripta Materialia Vol.41 (1999), pp.353~357.
30.Y. Wu﹐I. Baker﹐Scripta Materialia Vol.37 (1997), pp.437~442.
31.H. S. Kim﹐Materials Science and Engineering A315 (2001), pp.122~128.
32.M. Furukawa, Z. Horita, M. Nemoto and T. G. Langdon, The Minerals Metals & Materials Society, Warrendale, PA (2000), pp. 125.
33.M. Furukawa﹐Y. Iwahashi﹐Z. Horita﹐M. Nemoto and T. G. Langdon﹐Materials Science and Engineering A257 (1998), pp. 328~332.
34.Y. Iwahashi﹐Z. Horita﹐M. Nemoto and T. G. Langdon﹐Acta Materialia Vol.46 (1998), pp. 3317~3331.
35.K. Oh-ishi﹐Z. Horita﹐M. Furukawa﹐M. Nemoto and T. G. Langdon﹐Metall.Trans. A29 (1998), pp. 2245.
36.Robert E. Reed-Hill and Reza Abbaschian, “Physical metallurgy principles”, 3th Edition, 1973, pp.227-271.
37.P. Gordon , Trans. AIME, 203 1043 (1955).
38.J. C. Li, Appl. J. Phys., 33 2958 (1962).
39.R. M. Treco, AIME Regional Conference on Reactive Metals, (1956), pp. 136.
40.J. S. Smart, and A. A. Smith, Trans. AIME 152 103 (1943).
41.W. A. Anderson and R. F. Mehl, Trans. AIME, 161 140 (1945).
42.T. Mukai, H. Watanabe and K. Higashi, Materials Science Forum Vol. 350-351 (2000), pp. 159-170.
43.Y. N. Wang and J.C. Huang, “ Texture analysis in hexagonal materials”, Materials Chemistry and Physics 81 (2003), pp. 11~26.
44.王宗鼎,“Ti3Al基超塑薄板之超塑性特性分析”,中山大學材料科學與工程研究所,碩士論文,1996年。
45.楊益郎,“5083鋁合金經等通道彎角擠製後之微結構及機械性質研究” ,中央大學機械工程研究所,博士論文,2005年。
46.G. E. Dieter, “Mechanical metallurgy”, McGraw-Hill Book Co., 1988, pp. 633.
47.T. G. Nich, J. Wadsworth and O. D. Sherby, “Superplasticity in metals and Ceremics”, Printed in the United Kingdom at University Press, Cambridge, USA, 1997.
48.蕭一清,“5083鋁合金低溫超塑性研發與變形機構分析”, 中山大學材料科學與工程研究所,博士論文,2001。
49.黃建超,”AZ31鎂合金之管材擠型與液壓鼓脹成形研發”,中山大學材料科學與工程研究所,博士論文,2001。
50.P. Metenier, G. Gonzales-Doncel, O. A. Ruano, J. Wolfenatine and O. D. Sherby, Materials Science and Engineering A125 (1990) pp. 195~202.
51.G. Gonzales-Doncel, J. Wolfenatine, P. Metenier, O. A. Ruano and O. D. Sherby, Journal of Materials Science 25(1990), pp. 4535~4540.
52.K. Higashi and J. Wolfenatine, Materials Letters Vol. 10 No. 7.8(1991) , pp. 329~332.
53.H. Takuda, H. Matsusaka, S. Kikuchi and K. Kubota, Journal of Materials Science 37(2002) , pp. 51~57.
54.T. Mohri, M. Mabuchi, M. Nakamura, T. Asahina, H. Iwasaki, T. Aizawa and K. Higashi,“Microstructural evolution and superplasticity of rolled Mg-9Al-1Zn”, Materials Science and Engineering A290 (2000), pp. 139~144.
55.W. J. Kim, S. W. Chung, C. S. Chung and D. Kum, “ Superplasticity in thin magnesium alloy sheets and deformation mechanism maps for magnesium alloys at elevated temperatures”, Acta Mater. 49(2001), pp. 3337~3345.
56.S. Kamado, T. Ashie, Y. Ohshima and Y. Kojima, Materials Science Forum Vols. 350-351 (2000), pp. 55~62.
57.Y. Yoshida, L. Cisar, S. Kamado and Y. Kojima,“Low temperature superplasticity of ECAE processed Mg-10﹪Li-1﹪Zn alloy”, Materials Transaction Vol.43 No. 10(2002), pp.2419~2423.
58.M. Furui, C. Xu, T. Aida, M. Inoue, H. Anada and T. G. Langdon, “Improving the superplastic properties of a two-phase Mg-8%Li alloy through processing by ECAP”, Materials Science and Engineering A 410-411(2005), pp. 439~442.
59.L. Jin, D. Lin, D. Mao, X. Zeng, W. Ding, “Mechanical properties and microstructure of AZ31 Mg alloy processed by two-step equal channel angular extrusion”, Materials Letters 59(2005), pp. 2267~2270.
60.H. K. Lin, J. C. Huang, T. G. Langdon, “Relationship between texture and low temperature superplasticity in an extruded AZ31 Mg alloy processed by ECAP”, Materials Science and Engineering A 402(2005), pp. 250~257.
61.楊仁豪,“AZ31鎂合金經ECAE後晶粒細化與超塑性之研究”, 交通大學材料科學與工程研究所,碩士論文,2001年。
62.W. J. Kim, C. W. An, Y. S. Kim, S. I. Hong,“Mechanical properties and microstructures of an AZ61 Mg alloy produced by equal channel angular pressing ”, Scripta Materialia 47(2002), pp. 39~44.
63.江明,“利用等徑轉角擠型來改善AM60與AM60-1RE鎂合金之高溫成型性研究”, 大同大學材料工程研究所,碩士論文,2004年。
64.M. Mabuchi, H. Iwasaki, K. Yanase and K. Higashi, “Low temperature superplasticity in an AZ91 magnesium alloy processed by ECAE”, Scipta Materialia Vol. 36 No. 6(1997), pp. 681~686.
65.H. Zhong, L. Feng, P. Liu and T. Zhou, “Design of a Mg-Li-Al-Zn alloy by means of CALPHAD approach”, Journal of Computer-Aided Materials Design 10(2003), pp. 191~199.
66.M. Eddahbi, J. A. del Valle, M. T. Perez-Prado, O. A. Ruano, “Comparison of the microstructure and thermal stability of an AZ31 alloy processed by ECAP and large strain hot rolling”, Materials Science and Engineering A410-411(2005), pp. 308~311.
67.J. A. del Valle, M. T. Perez-Prado, O. A. Ruano, Materials Science and Engineering 355(2003), pp. 68~78
68.S. E. Ion, F. J. Humphreys and S. H. white, Acta Metall. 30(1982), pp. 1909.
69.汪曉芸,“利用往復式擠型法開發高性能Mg-Al-Zn鎂合金之研究”,清華大學材料科學工程研究所,碩士論文,2004年。
70.龔仁傑,“往復式擠型回收鎂合金廢料之研究”,清華大學材料科學工程研究所,碩士論文,2001年。
71.陳立文,“等通道彎角擠製之有限元素分析”,中央大學機械工程研究所,碩士論文,2002年。
72.J. Y. Wang, W. P. Hong, P. C. Hsu, C. C. Hsu and S. Lee, “Microstructures and mechanical behavior of processed Mg-Li-Zn alloy”, Materials Science Forum Vols. 419-422(2003), pp.165~170.
73.王建義、許博淳、洪衛朋以及徐章銓,金屬熱處理第76期,92年3月。
74.V. M. Segal, “Materials processing by simple shear”, Materials science & engineering A197 (1995), pp. 157~164.
75.王郁雲,“變形溫度對等徑轉角擠製純鋁微組織之影響”,中山大學碩士論文,2002年。
76.A. Yamashita, D. Yamaguchi, Z. Horita and T. G. Langdon,“ Influen-
ce of pressing temperature on microstructural development in equal-
channel angular pressing”, Materials Science and Engineering A287 (2000), pp. 100~106.
77.A. K. Vasudevan and R.D. Doherty, Aluminum Alloys – Contempor-
ary Research and Application Vol. 31 (1989), pp. 145.
78.R. W. Cahn and P. Haasen, “Physical metallurgy”, Vol. 3, PART 2(1983), pp. 1596.
79.O. Sitdikov, R. Kaibyshev and T. Sakai, “Dynamic recrystallization based on twinning in coarse-grained Mg”, Materials Science Forum Vols. 419-422(2003), pp.521~526.
80.E. Cerri, M. Cabibbo and E. Evangelista, “Microstructural evolution during high-temperature exposure in a thixocast magnesium alloy”, Materials Science and Engineering A333(2002), pp.208~217.
81.張榮貴,“利用往復式擠製製作超塑性AZ91鎂合金之研究”,清華大學材料科學工程研究所,碩士論文,1999年。
82.R. W. Cahn and P. Haasen, “Physical metallurgy”, Vol. 3, PART 2(1983), pp. 1611~1613.
83.R. W. Cahn and P. Haasen, “Physical metallurgy”, Vol. 3, PART 2(1983), pp. 2658~2659.
84.S. Ferrasse, V.M. Segal, S.R. Kalidindi, F. Alford, “Texture evolution during equal channel angular extrusion(ECAE), Part Ⅰ, Effect of route, number of passes and initial texture”, Materials Science & Engineering A368 (2004), pp. 28~40.
85.M. T. Pérez-Prado and O. A. Ruano, “Texture evolution during grain growth in annealed MG AZ61 alloy”, Scripta Materialia 48(2003), pp. 59~64.
86.J. A. del Valle, M. T. Pérez-Prado and O. A. Ruano, “Texture evolution during large-strain hot rolling of the Mg AZ61 alloy”, Materials Science and Engineering A355(2003), pp. 68~78.
87.W. J. Kim, S. I. Hong, Y. S. Kim, S. H. Min, H. T. Jeong and J. D. Lee, “Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing”, Acta Materialia 51(2003), pp. 3293~3307.
88.A. Yamamoto, T. Ashida, Y. Kouta, K. B. Kim, S. Fukumoto and H. Tsubakino, Materials Transactions Vol. 44 No. 4 (2003), pp. 619~624.
89.劉國雄、林樹均、李勝隆、鄭晃忠、葉均蔚,“工程材料科學”,全華科技圖書公司,82年7月。
指導教授 李雄(Shyong Lee) 審核日期 2006-5-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明