博碩士論文 90343009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:55 、訪客IP:3.148.106.31
姓名 楊益郎(Yi-Lang Yang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 5083鋁合金經等通道彎角擠製後之微結構及機械性質研究
(Microstructure and Mechanical Properties of 5083 Al Alloy after Equal Channel Angular Extrusion)
相關論文
★ 使用實驗計劃法求得印刷電路板微鑽針最佳鑽孔參數★ 滾針軸承保持架用材料之電鍍氫脆研究
★ 強制氧化及熱機處理對鎂合金AZ91D固相回收製程之研究★ 滾針軸承保持架圓角修正之有限元素分析
★ 透過乾式蝕刻製作新型鍺全包覆式閘極電晶體元件★ 窗型球柵陣列構裝翹曲及熱應力分析
★ 冷軋延對ZK60擠製材的拉伸與疲勞性質之影響★ 熱引伸輔助超塑成形製作機翼整流罩之設計及分析
★ 超塑性鋁合金5083用於機翼前緣整流罩之研究★ 輕合金輪圈疲勞測試與分析
★ 滾針軸承保持架之有限元分析★ 鎂合金之晶粒細化與超塑性研究
★ 平板式固態氧化物燃料電池穩態熱應力分析★ 固態氧化物燃料電池連接板電漿鍍膜特性研究
★ 7XXX系鋁合金添加Sc之顯微組織與機械性質研究★ 高延性鎂合金之特性及成形性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 商業用5083鋁合金,具有低密度、強度適中、抗腐蝕性良好及焊接性佳等特點,透過輥軋式熱機處理製作成鈑材後,成為最常被使用在結構材上的細晶超塑性鋁合金;近幾年來,另一種嶄新的晶粒細化技術,等通道彎角擠製(ECAE)被廣泛的研究應用在許多的鎂合金及鋁合金方面,但是對於5083鋁合金的研究卻未多見。本研究應為首次對5083鋁合金實行ECAE,共應用4種ECAE製程參數及不同批次生產的5083鋁合金,探討ECAE製程參數及合金元素對擠製後微結構及機械性質影響,另外也比較ECAE及輥軋兩種製程的晶粒細化效果。
5083鋁合金經過90°-200℃-Bc8擠製後,能產生小於1μm之等軸次晶粒結構,Fe含量較低的5083鋁合金並且在250℃及450℃的溫度下,使用1×10-3 s-1的應變速率,分別得到266.6%及350%的伸長量,同時具有低溫及高溫的超塑性。此外,5083鋁合金經過ECAE製程後,初始的〈110〉// ND的ζ-fiber完全消失,轉變成為類似扭轉變形時產生的〈111〉// ND的剪力織構,除了擠製溫度之外,剪力織構的強度取決於剪切平面的數量與夾角,使用Φ=120°的織構強度會高於Φ=90°,而且各擠製方位剪力織構強度的表現Route C>Route A>Route Bc。
ECAE製程參數的影響,除了使用較小的通道夾角,可以施加較大剪應變於材料之外,不同的擠製方位、擠製溫度及擠製道次,也會導致微結構產生不同的晶粒形狀、晶界性質、織構組成及強度,這些因素主導著低溫超塑性期間,動態再結晶的出現與否。高溫超塑性期間,Mn、Fe、Si元素組成的第二相顆粒,扮演非常重要的角色,Fe含量較少的第二批5083鋁合金,在450℃的拉伸測試中,可以獲得較高的m值與最佳的伸長量。
摘要(英) Commerical avaiable 5083 Al alloy is well known for its good weldability, corrosion resistance and medium strength with ductility. It was one of the few aluminum alloys that had been targeted for developing fine-grained superplasticity for structural applications through rolling type thermo-mechanical process. In recent years, a new technique for refining grain sizes, equal channel angular extrusion (ECAE) has been emerged and imposed on many magnesium and some aluminum alloys. Surprisingly, it is seemingly not involving the Al-5083. In this study, billets extruded by ECAE using four kinds of process parameters will be prepared for microstructure observations and mechanical property tests. Furthermore, two batches of 5083 Al alloys containing slightly different on composition will also be compared after ECAE.
The microstructure of 5083 Al alloy processed by 90°-200℃-Bc8 condition is consisted of equaxied subgrain structure, and grain size is small than 1μm. The elongations of 5083 alloy containing lower Fe that tested at initial strain rate 1×10-3 s-1 are 266.7% and 350% at 250℃ and 450℃, respectively. The restult shows that 5083 Al alloy reveals low and high temperatures superplasticity simultaneously. After ECAE, the initial texture of 〈110〉// ND of materials disappeared completely and were translated into 〈111〉// ND shear texture which was also formed in torsion processed material. Besides extrusion temperatures, the amount of shear planes and an included angle between them also affect the intensity of shear texture. The intensity of shear texture at die angle Φ=120° is higher than Φ=90°, and Route C>Route A>Route Bc.
Using different process parameters, such as Routes, temperatures and number of passes, which will lead to microstructure having different grain shapes, grain boundary properties and texture components. These characteristics will control whether dynamic recrystallization occurs or not during low temperature superplasticity. During high temperature superplasticity, the second phase particles consist of Mn, Fe and Si elements, which play an important part for tensile testing. The 5083 Al alloy containing fewer Fe which represents higher m-value and optimum elongation at 450℃.
關鍵字(中) ★ 方位分佈函數
★ 織構
★ 超塑性
★ 機械性質
★ 微結構
★ 5083鋁合金
★ 等通道彎角擠製
關鍵字(英) ★ Equal channel angular extrusion
★ 5083 Al alloy
★ microstructure
★ mechanical property
★ ODFs
★ Texture
★ superplasticity
論文目次 摘要
目錄------------------------------------------------------------------------------------------------I
表目錄-------------------------------------------------------------------------------------------IV
圖目錄--------------------------------------------------------------------------------------------V
第一章 前言-------------------------------------------------------------------------------------1
1.1 研究動機-----------------------------------------------------------------------------------1
1.2 5083鋁合金的特性簡介〔4〕-----------------------------------------------------------2
第二章 研究背景與方向----------------------------------------------------------------------5
2.1 晶粒細化的方法--------------------------------------------------------------------------5
2.2 等通道彎角擠製(equal channel angular extrusion, ECAE)-----------------------6
2.2.1 大量塑性變形法(severe plastic deformation, SPD)-----------------------------6
2.2.2 等通道彎角擠製(ECAE)之工作原理---------------------------------------------6
2.3 等通道彎角擠製之製程參數----------------------------------------------------------10
2.3.1 擠製方位(Route)--------------------------------------------------------------------10
2.3.2 擠製道次(number of passes)------------------------------------------------------12
2.3.3 擠製溫度------------------------------------------------------------------------------13
2.3.4 擠製速度、潤滑劑及背壓----------------------------------------------------------15
2.4 鋁鎂合金經等通道彎角擠製後之微結構及機械性質發展----------------------17
2.4.1 微結構---------------------------------------------------------------------------------17
2.4.2 常溫機械性質------------------------------------------------------------------------21
2.4.3 超塑性(Superplasticity)------------------------------------------------------------22
2.5 織構之分析-------------------------------------------------------------------------------29
2.5.1 織構之形成與影響因素------------------------------------------------------------29
2.5.2 極圖(pole figure)之簡介-----------------------------------------------------------31
2.5.3 方位分佈函數(Orientation distribution functions, ODFs)之應用-----------32
2.5.4 鋁鎂合金織構之相關研究---------------------------------------------------------34
2.6 研究目的與方向-------------------------------------------------------------------------40
第三章 實驗方法與步驟---------------------------------------------------------------------52
3.1 實驗材料----------------------------------------------------------------------------------52
3.2 模具設計及擠製設備-------------------------------------------------------------------52
3.3 實驗步驟----------------------------------------------------------------------------------53
3.4 機械性質測試----------------------------------------------------------------------------54
3.4.1 微硬度試驗---------------------------------------------------------------------------54
3.4.2 常溫拉伸性質測試------------------------------------------------------------------54
3.4.3 高溫拉伸性質測試------------------------------------------------------------------54
3.5 微結構觀察-------------------------------------------------------------------------------55
3.6 織構觀察----------------------------------------------------------------------------------56
第四章 結果與討論---------------------------------------------------------------------------64
4.1 ECAE製程實驗--------------------------------------------------------------------------64
4.1.1 擠製溫度的選定---------------------------------------------------------------------64
4.1.2 擠製後的試棒外觀------------------------------------------------------------------65
4.1.3 常溫機械性質------------------------------------------------------------------------65
4.1.4 微結構觀察---------------------------------------------------------------------------68
4.2 織構分析----------------------------------------------------------------------------------71
4.2.1 X光繞射實驗-------------------------------------------------------------------------71
4.2.2 方位分佈函數的量測分析---------------------------------------------------------72
4.2.3 探討通道夾角及擠製方位對織構發展的影響---------------------------------75
4.3 高溫拉伸實驗----------------------------------------------------------------------------77
4.3.1 原始材(as-extruded)試片與90°-200℃-Bc8試片之比較------------------77
4.3.2 溫度及應變速率對90°-200℃-Bc8試片之影響-------------------------------79
4.3.3 不同ECAE製程試片之比較------------------------------------------------------80
4.3.4 高溫拉伸前之微結構變化---------------------------------------------------------81
4.4材料初始條件的影響--------------------------------------------------------------------84
4.4.1 微結構觀察及分析------------------------------------------------------------------84
4.4.2 高溫拉伸試驗------------------------------------------------------------------------85
4.4.3 第二相顆粒對超塑性的影響------------------------------------------------------86
第五章 結論----------------------------------------------------------------------------------157
參考文獻---------------------------------------------------------------------------------------160
參考文獻 1. http://www.audi.cz/technika/tec_alu.php
2. 蔡幸甫,輕金屬產業的發展趨勢,工業材料,166期,89年10月,pp. 165~168。
3. 蘇聖文,國立中山大學材料科學研究所碩士論文(1999),p 2。
4. A.K. Vasudevan and R.D. doherty,” Aluminum alloys-contemporary research and applications”, Vol. 31 (1989), pp. 85~94.
5. Y.U. Zhu, T.C. Lowe and T.G. Langdon,”Performance and application of nanostructured materials produced by severe plastic deformation”, Scripta Materialia 51 (2004), pp. 825~830.
6. V.L. Tellkamp and E.J. Lavernia,” Process and Mechanical Properties of Nanocrystalline 5083 Al Alloy”, NanoStructured Materials, Vol. 12 (1999), pp. 249~252.
7. Y. Wu, L.Del Castillo, E.J. Lavernia,” Superplasticity of 5083 alloys produced by spray deposition”, Scripta Materials, Vol. 34, No. 8 (1996), pp.1243 ~1249.
8. K. Zhang, I.V. Alexandrov and K. Lu,” The X-ray study on a nanocrystalline Cu processed by Equal-Channel Angular Extrusion”, Nanostructured Materials, Vol. 9 (1997), pp. 347~350.
9. W.Blum, Q. Zhu, R. Merkel, H.J. McQueen,” Geometric dynamic recrystallization in hot torsion of Al-5Mg-0.6Mn”, Materials science & engineering, A205 (1996), pp. 23 ~30.
10. R. Verma, A.K. Ghosh, S. Kim, C. Kim,” Grain refinement and superplasticity in 5083 Al”, Materials Science & Engineering A 191 (1995), pp.143 ~150.
11. R.M. Cleveland, A.K. Ghosh, J.R. Bradley,” Comparison of superplastic behavior in two 5083 Al alloys”, Materials Science & Engineering A 351 (2003), pp. 228 ~236.
12. V. M. Segal, Invention Sertificate of the USSR Patent No. 575892 (1977).
13. V. M. Segal, V.I. Reznikov, A.E. Drobyshevskiy and V.I. Kopylov, Russian Metallurgy, Engl. Transl., Vol. 1 (1981), p 115.
14. Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto and T. G. Langdon,” Principle of Equal-Channel Angular Pressing for the Processing of Ultra-Fine Grained Materials”, Acta Materialia, Vol. 35, No. 4 (1996), pp.143~146.
15. K. Nakashima, Z. Horita, M. Nemoto and T.G. Langdon,” Influence of channel angle on the development of ultrafine grains in equal-channel angular extrusion”, Acta Materialia, Vol. 46, No. 5 (1998), pp. 1589~1599.
16. Raghavan Srinivasan, “ Computer simulation of the equal channel angular extrusion process”, Scripta Materialia 44 (2001), pp. 91~96
17. 陳立文,等通道彎角擠製之有限元素分析,中央大學碩士論文(2002)。
18. Y. Wu and I. Baker,” An experimental study of Equal Channel Angular Extrusion”, Scripta Materialia, Vol. 37, No. 4 (1997), pp. 437~442.
19. A. Shan; I.G. Moon, H.S. Ko, J.W. Park,” Direct observation of shear deformation during equal channel angular pressing of pure aluminum”, Scripta Materialia, Vol. 41 (1999), pp.353~357.
20. H. S. Kim, M. H. Seo and S. I. Hong,” Plastic deformation analysis of matels during equal channel angular pressing“, Journal of Materials Processing Technology, 113 (2001), pp. 622~626.
21. Y.L. Yang and Shyong Lee,” Finite element analysis of strain conditions after equal channel angular extrusion”, Journal of Materials Processing Technology, 140 (2003), pp. 583~587.
22. Y. Iwahashi, Z. Horita, M. Nemoto and T. G. Langdon,” An investigation of microstructural evolution during equal-channel angular pressing”, Acta Materialia, Vol. 45 (1997), pp. 4733~4741.
23. V.M. Segal,” Materials processing by simple shear”, Materials science & engineering A197 (1995), pp. 157~164.
24. Y. Iwahashi, Z. Horita, M. Nemoto and T. G. Langod,“ The process of grain refinement in equal-channel angular pressing”, Acta Materialia, Vol. 46 (1998), pp. 3317~3331.
25. M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon,” The shearing characteristics associated with equal-channel angular pressing”, Materials Science and Engineering A257 (1998), pp. 328~332.
26. Z. Horita, M. Furukawa, K. Ohisif, M. Nemoto and T. G. Langdon,” Equal-channel angular pressing for grain refinement of metallic materials”, The Japan Institute of Metals (1999), pp. 301~308.
27. H.J. Cui, R.E. Goforth and K.T. Hartwig,” The three-dimensional simulation of flow pattern in equal-channel angular extrusion”, The member journal of the minerals, metals & materials society, Vol. 50, No. 8 (1998).
28. 孫佩玲,純鋁經大量塑性變形生成細晶粒之研究,中山大學碩士論文(1998)。
29. 王郁雲,變形溫度對等徑轉角擠製純鋁微組織之影響,中山大學碩士論文(2002)。
30. A. Yamashita, D. Yamaguchi, Z. Horita and T. G. Langdon,“ Influence of pressing temperature on microstructural development in equal-channel angular pressing”, Materials Science and Engineering A287 (2000), pp. 100~106.
31. P.B. Berbon, M. Furukawa, Z. Horita, M. Nemoto, N. K. Tsenev and T. G. Langdon,” Influence of pressing speed on microstructural development in equal-channel angular pressing”, Metallurgical and Materials Transactions A, Vol. 30A (1998), pp. 1989~1998.
32. M. Kamachi, M. Furukawa, Z. Horita, T.G. Langdon,” A model investigation of the shearing characteristics in equal-channel angular pressing”, Materials Science and Engineering A347 (2003), pp. 223~230.
33. J.R. Bowen, A. Gholinia, S.M. Roberts, P.B. Prangnell,” Analysis of the billet deformation behaviour in equal channel angular extrusion”, Materials Science and Engineering A287 (2000), pp. 87~99.
34. Y. Iwahashi, Z. Horita, M. Nemoto and T. G. Langod,“ Factors influencing the equilibrium grain size in equal-channel angular pressing: role of Mg additions to Aluminum”, Metallurgical and Materials Transactions A, Vol. 29A (1998), p. 2503.
35. J. Wang, M. Furukawa, Z. Horita and M. Nemoto,” Enhanced grain growth in an Al-Mg alloy with ultrafine grain size”, Materials Science and Engineering A216 (1996), pp. 41~46.
36. A. Gholinia, P.B. Prangnell and M.V. Markushev,” The effect of strain path on the development of deformation structure in severely deformation aluminum alloys processed by ECAE”, Acta Meterialia 48 (2000), pp. 1115~1130.
37. 黃盈源,鋁鎂合金等徑轉角擠製組織與擠製溫度關係之研究,中山大學碩士論文(1998),P6。
38. 陳奕琦,等徑轉角擠製溫度對鋁鎂合金微結構發展的影響,中山大學碩士論文(2001)。
39. Z. Horita, T. Fujinami, M. Nemoto and T.G. Langdon,” Improvement of mechanical properties for Al alloys using equal-channel angular pressing”, Journal of Materials Processing Technology, 117 (2001), pp. 288~292.
40. M. Kawazoe, T. Shibata, T. Mukai and K. Higashi,” Elevated temperature mechanical properties of A 5056 Al-Mg ally processed by equal-channel-angular-extrusion”, Scripta Materialia, Vol. 36, No. 6 (1997), pp. 699~705.
41. M. Mabuchi, H. Iwasaki and K. Higashi,” Microstructure and mechanical properties of 5056 Al alloy processed by equal channel angular extrusion”, NanoStructured Materials, Vol. 8, No. 8 (1997), pp. 1105~1111.
42. M.V. Markushev, C.C. Bampton, M.Yu. Murashkin and D.A. Hardwick,” Structure and properties of ultra-fine grained aluminum alloys produced by severe plastic deformation”, Materials Science and Engineering A234-236 (1997), pp. 927~931.
43. M.V. Markushev, M.Yu. Murashkin, P.B. Prangnell, A. Gholinia and O.A. Maiorova,” Structure and Mechanical behaviour of an Al-Mg alloy after equal channel extrusion”, NanoStructureed Materials, Vol. 12 (1999), pp. 839~842.
44. T. Mukai, M. Kawazoe and K. Higashi,” Strain-rate dependence of mechanical properties in AA5056 Al-Mg alloy processed by equal-channel-angular-extrusion”, Materials Science and Engineering A247 (1998), pp. 270~274.
45. T. Mukai, M. Kawazoe and K. Higashi,” Dynamic mechanical properties of a near-nano aluminum alloy processed by equal-channel-angular-extrusion”, NanoStructured Materials, Vol. 10, No. 5 (1998), pp. 755~765.
46. A.K. Ghosh and C.H. Hamilton,” Superplastic forming and diffusion bonding”, Seminar course (1990), p. 5.
47. Roger Pearce,“ Superplasticity- an overview ”, NATO/AGARD Lecture Series on Superplasticity, 09/ 1987, p. 1.
48. R. Verma , P.A. Friedman , A.K. Ghosh , C. Kim and S. Kim ,” Superplastic Forming Characteristics of Fine-Grained Aluminum”, J. Mater. Sci. Eng (1995), p. 543 .
49. A.K. Ghosh and C.H. Hamilton,” Superplastic forming and diffusion bonding”, Seminar course (1990), pp. 159~164.
50. A.K. Ghosh and C.H. Hamilton,” Superplastic forming and diffusion bonding”, Seminar course (1990), pp. 60~71.
51. S. Komura, M. Furukawa, Z. Horita, M. Nemoto and T.G. Langdon,” Optimizing the procedure of equal-channel angular pressing for maximum superplasticity”, Matterials Science and Engineering A297 (2001), pp. 111~118.
52. Japanese Standards Association,” Glossary of terms used in metallic superplastic materials”, JIS H 7007 No. 1005, p. 1525.
53. H. Akamatsu, T. Fujinami, Z. Horita and T.G. Langdon,” Influence of rolling on the superplastic behavior of an Al-Mg-Sc alloy after ECAP”, Scripta Materialia, 44 (2001), pp. 759~764.
54. H.B. Geng, S.B. Kang and B.K. Min,” Hight temperature tensile behavior of ultra-fine grained Al-3.3Mg-0.2Sc-0.2Zr alloy by equal channel angular pressing”, Matterials Science and Engineering A373 (2004), pp. 229~238.
55. R.K. Islamgaliev, N.F. Yunusova, R.Z. Valiev, N.K. Tsenev, V.N. Perevezentsev and T.G. Langdon,” Characteristics of superplasticity in an ultrafine-grained aluminum alloy processed by ECA pressing, Scripta Materialia, 49 (2003), pp. 467~472.
56. K.T. Park, D.Y. Hwang, Y.K. Lee, Y.K. Kim and D.H. Shin,” High strain rate superplasticity of summicrometer grained 5083 Al alloy containing scandium fabricated by severe plastic deformation”, Matterials Science and Engineering A341 (2003), pp. 273~281.
57. Y.N. Wang and J.C. Huang,” Texture analysis in hexagonal materials”, Materials Chemistry and Physics 81 (2003), pp. 11~26.
58. 蕭一清,5083鋁合金低溫超塑性研發與變形織構分析,國立中山大學博士論文(2000),45~48頁.
59. A.K. Vasudevan and R.D. Doherty, Aluminum Alloys – Contemporary Research and Application, Vol. 31 (1989), p. 563.
60. H-R Wenk and P Van Houtte,” Texture and anisotropy”, Rep. Prog. Phys. 67 (2004), pp. 1381~1384.
61. 蔡東霖,利用ECAE及退火處理細化鋁鎂合金晶粒,國立中山大學碩士論文(2000),27~30頁.
62. F.J. Humphreys, P.B. Prangnell and R. Priestner,” Fined-grained alloys by thermomechanical processing”, Current Opinion in Solid State & Materials Science 5 (2001), pp. 15~21.
63. A.K. Vasudevan and R.D. Doherty, Aluminum Alloys – Contemporary Research and Application, Vol. 31 (1989), p. 564.
64. http://aluminium.matter.org.uk
65. P.L. Sun, P.W. Kao and C.P. Chang,” Characteristics of submicron grained structure formed in aluminum by equal channel angular extrusion”, Materials Science and Engineering A283 (2000), pp. 82~85.
66. F.J. Humphreys and M Hatherly, Recrystallization and Related Annealing Phenomena, 1st edition (1995), p. 437.
67. F.J. Humphreys and M Hatherly, Recrystallization and Related Annealing Phenomena, 1st edition (1995), p. 46.
68. H-R Wenk and P Van Houtte,” Texture and anisotropy”, Rep. Prog. Phys. 67 (2004), pp. 1385~1389.
69. C. Pithan, T. Hashimoto, M. Kawazoe, J. Nagahora and K. Higashi,” Microstructure and texture evolution in ECAE processed A5056”, Materials Science and Engineering A280 (2000), pp. 62~68.
70. Y.T. Zhu and Terry C. Towe,” Observation and issues on mechanisms of grain refinement during ECAE process”, Materials Science and Engineering A291 (2000), pp. 46~53.
71. W.H. Huang, L. Chang, P.W. Kao and C.P. Chang,” Effect of die angle on the deformation texture of copper processed by equal channel angular extrusion”, Materials Science and Engineering A307 (2001), pp. 113~118.
72. A. Gholinia, P. Bate and P.B. Prangnell,” Modelling texture development during equal channel angularextrusion of aluminum”, Acta Materialia 50 (2002), pp.2121~2136.
73. H. Utsunomiya, K. Hatsuda, T. Sakai and Y. Saito,” Continuous grain refinement of aluminum strip by conshearing”, Materials Science and Engineering A 372 (2004), pp. 199~206.
74. Jianguo Hu, Keisuke Ikeda and Tadasu Murakami,” Effect of texture components on plastic anisotropy and formability of aluminium alloy sheets”, Journal of Materials Processing Technology 73 (1998), pp. 49~56.
75. C.Y. Yu, P.L. Sun, P.W. Kao and C.P. Chang,” Evolution of microstructure during annealing of a severely deformation aluminum”, Materials Science and Engineering A366 (2004), pp. 310~317.
76. S. Ferrasse, V.M. Segal, S.R. Kalidindi and F. Alford,” Texture evolution during equal channel angular extrusion, Part Ⅰ. Effect of route, number of passes and initial texture”, Materials Science and Engineering A368 (2004), pp. 28~40.
77. S. Ferrasse, V.M. Segal and F. Alford,” Texture evolution during equal channel angular extrusion (ECAE), Part Ⅱ. An effect of post-deformation annealing”, Materials Science and Engineering A372 (2004), pp. 235~244.
78. American Society for Testing and Materials,” Mechanical Testing; Elevated and Low-Temperature Tests”, 03.01 E8-90a, pp. 130~145.
79. A.K. Vasudevan and R.D. Doherty, Aluminum Alloys – Contemporary Research and Application, Vol. 31 (1989), p. 145.
80. ASM Metals Handbooks,” Properties and selections: Nonferrous Alloys and Pure Metals”, Vol. 2 (1979), p. 93.
81. A.K. Vasudevan and R.D. Doherty, Aluminum Alloys – Contemporary Research and Application, Vol. 31 (1989), p. 144.
82. I.C. Hsiao and J.C. Huang,” Development of low temperature superplasticity in commerical 5083 Al-Mg alloys”, Scripta Materialia, Vol. 40 No. 6 (1999), pp. 697~703.
83. R. Verma, P.A. Friedman, A.K. Ghosh, S. Kim ans C. Kim,” Characterization of superplastic deformation behavior of a fine grain 5083 Al alloy sheet”, Metall. Mater. Trans. 27A (1996), pp. 1889~1898.
84. S.N. Patankar and T.M. Jen,” Strain Rate Insensitive Plasticity in Aluminum Alloy 5083”, Scripta Mater. 38 (1998), pp. 1255~1261.
指導教授 李雄(Shyong Lee) 審核日期 2005-6-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明