博碩士論文 90343012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:47 、訪客IP:3.12.34.192
姓名 鄭朝恩(Chaw-En Zhen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 直接模擬蒙地卡羅法於高低速流場之模擬
(Monte Carlo Simulations of High and Low-Speed Rarefied Gas Flows)
相關論文
★ 冷卻水溫度與冰水溫度對離心式冰水主機性能影響之實驗分析★ 不同結構與幾何形狀對熱管性能之影響
★ HFC-134a與HFO-1234yf 在板式熱交換器中流動沸騰之性能比較★ 油冷卻器熱傳與壓降性能實驗分析
★ 水對冷媒R22在板式熱交換器內之性能測試分析★ 水對水在不同板片型式之板式熱交換器性能測試分析與比較
★ 油冷卻器性能測試分析與比較★ 空調機用水簾式暨光觸媒空氣清淨機 研製及測試
★ 水對空氣在板式熱交換器之性能測試分析★ 板片入出口及入出口管路壓降估計對板式熱交換器壓降性能影響分析
★ 微熱交換器之設計與性能測試★ 板式熱交換器之入出口壓降實驗分析
★ 液體冷卻系統中之微熱交換器性能分析與改良★ 液體微熱交換器之熱傳增強研究
★ 冷媒R22在板式熱交換器內之凝結熱傳及壓降性能實驗分析★ 不同參數對燒結式熱管性能之影響研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本文以直接模擬蒙地卡羅法計算並分析極音速稀薄氣體中平行混合流之動量以及熱量傳輸現象。另外本文亦針對三維低流速微矩形管來探討以二維模擬取代三維模擬之合理性。
本文計算極音速稀薄氣體中平行混合流之速度、壓力、溫度、密度之流場性質,亦計算混合層中各階速度脈動相關函數、速度與溫度脈動相關函數、機率密度函數f(u’’)、f(v’’) 、 f(t’’)以及聯合機率密度函數f(u’’,v’’) 、f(u’’,t’’) 和f(v’’,t’’) 以對稀薄氣體混合層之內在結構、動量、熱量傳輸有所了解。本文首先觀察其流場特性以及兩自由流分別為不同速度比0.3、0.45以及0.6時自由剪力流混合結構之差異,發現極音速稀薄氣體中平行混合流之流場結構與高速連性紊流混合層類似。接著以機率密度函數f(u’’)、f(v’’) 、 f(t’’)及聯合機率密度函數f(u’’,v’’) 、f(u’’,t’’) 和f(v’’,t’’) 之分佈來解釋和了解其所相對應之各階速度脈動相關函數以及速度與溫度脈動相關函數的統計內涵。
本文亦以直接蒙地卡羅法搭配隱性邊界處理來模擬三維低流速微矩形管,並改變矩形管口徑寬高比為1、1.5、3和5來探討三維矩形管模擬加大口徑寬高比以漸近二維模擬之情形。在三維矩形管口徑寬高比為1、1.5、3和5之算例與二維模擬結果之比較中,發現當矩形管口徑寬高比小於3時,兩側管璧對於流場性質以及熱傳現象有很大的影響。但是當矩形管口徑寬高比越大時,則其模擬結果與二維模擬結果越相近,且當矩形管口徑寬高比大於5時,以二維模擬來取代三維模擬則可視為合理的。
摘要(英) The Direct Simulation Monte Carlo (DSMC) method has been employed to analyze the transport phenomena in a 2-D rarefied free shear layer at hypersonic speed and the rationality of the 2-D simplification for a 3-D low-speed rectangular cross-sectional microchannel.
The mixing properties of various fluctuation correlations are investigated in the present thesis for a rarefied gas free shear layer at hypersonic speed. The Reynolds average process is assumed when obtaining the correlation functions. Results show that the flow field structure was very similar to that of continuum flow ones at high Reynolds numbers. The higher order correlations are discussed to manifest that the statistical characteristics of these correlations can be realized via its corresponding pdfs, f(u’), f(v’), and jpdf, f(u’,v’), in velocity space. The heat transfer due to momentum and temperature fluctuation correlations, and , are calculated and try to discern its statistical characteristics via the revealed corresponding pdf, f(t’), and jpdfs, f(u’,t’), f(v’,t’), in velocity and temperature space. The calculated distributions of those correlation functions behave as momentum and heat transfer phenomena in the rarefied free shear layer which play a similar role as the turbulent transport in the continuum flow ones.
The Direct Simulation Monte Carlo (DSMC) method has also been employed to analyze the rationality of the 2-D simplification for a 3-D straight rectangular cross-sectional microchannel. An implicit treatment for low-speed inflow and outflow boundaries of the DSMC method for the microchannel flow is employed. The 3-D microchannel flows are simulated with cross aspect ratios in the range of 1 and 5. The calculated flow properties in the 3-D cases are compared with the results of the 2-D case. They show that when the aspect ratio < 3, the two extra side walls in the 3-D case have significant effects on the heat transfer and flow properties. When the aspect ratio is increased, the flow pattern and heat transfer characteristics tend to approach those of 2-D results. The 2-D simplification is found to be reasonable only when the cross aspect ratio is greater than 5.
關鍵字(中) ★ 機率密度函數
★ 脈動相關函數
★ 自由剪力層
★ 直接模擬蒙地卡羅法
關鍵字(英) ★ Fluctuation correlation function
★ DSMC
★ Free shear layer
★ Microchannel flow
★ Pdf
論文目次 Abstract I
List of Figures VII
List of Tables IX
Nomenclature X
Chapter 1 Indroduction 1
1.1 Background and Motivation 1
1.2 Objectives of the work 7
1.3 Thesis Structure 7
Chapter 2 Direct Simulation Monte Carlo Method 9
2.1 The Boltzmann Equation 9
2.2 The DSMC Procedure 11
2.2.1 Initial Conditions 11
2.2.2 Moving 12
2.2.3 Indexing 12
2.2.4 Collision Process 12
2.2.5 Sampling 13
Chapter 3 A Pdf Description of the Momentum and Temperature Fluctuation Correlations in a Rarefied Free Shear Layer 16
3.1 Background and Motivation 16
3.2 Fluctuation correlation functions and pdf in DSMC 17
3.3 Results and discussion 20
3.3.1 Pdf, jpdf and fluctuation correlations in phase space 23
3.3.1.1 Pdf, jpdf and fluctuation correlations in velocity space 23
3.3.1.2 Pdf, jpdf and fluctuation correlations in velocity and temperature spaces 25
3.4 Summary 27
Chapter 4 Comparison of 3-D and 2-D DSMC Heat Transfer Calculations of Low-Speed Short Microchannel Flows 63
4.1 Background and Motivation 63
4.2 Implicit boundary treatment 65
4.3 Results and discussion 67
4.4 Summary 70
Chapter 5 Conclusions 81
References 83
參考文獻 1. Oran, E. S., Oh, C. K. and Cybyk, B. Z., “Direct Simulation Monte Carlo: Recent Advances and Applications,” Ann. Rev. Fluid Mech., 30, pp. 403-441, 1998.
2. Schaaf, S. A. and Chambre, P. L., Flow of Rarefied Gases, Princeton University Press, Princeton, New Jersey, 1961.
3. Bobylev, A. V., “Exact Solutions of The Nonlinear Boltzmann Equation and of its Models,” Fluid Mech. Soviet Res., 13, pp. 105-110, 1984.
4. Cercignani, C., Rarefied Gas Dynamics. From Basic Concepts to Actual Calculations, Cambridge University Press, Cambridge, 2000.
5. Kogan. M. N., Rarefied Gas Dynamics, Plenum Press, New York, 1969.
6. Aristov, V. V., Direct Method for Solving the Boltzmann Equation and Study of Nonequilibrium Flows, Kluwer Academic Publishers, Dordrecht, 2001.
7. Bird, G. A., Molecular Gas Dynamics and the Direct Simulation of Gas Flow, Clarenden Press, Oxford, UK, 1994.
8. Bird, G. A., “Direct Simulation of the Boltzmann Equation,” Phys. Fluids, 13, pp. 2676-2681, 1970.
9. Nanbu, K., “”Theoretical Basis on the Direct Monte Carlo Method,” Rarefied Gas Dynamics, Boffi, V. and Cercignani, C. (editor), Teubner, Stuttgart, 1, 1986.
10. Wagner, W., “A Convergence proof for Bird’s Direct Simulation Monte Carlo Method for the Boltzmann Equation,” Journal Stat Physics, 66, pp. 1011-1044, 1992.
11. Bird, G. A., “Approach to Translational Equilibrium in a Rigid Sphere Gas,” Phys. Fluids, 6, pp. 1518-1519, 1963.
12. Pham-Van-Diep, G., Erwin, D. and Muntz, E. P., “Nonequilibrium Molecular Motion in a Hypersonic Shock Wave,” Science, 245, pp. 624-626, 1989.
13. Erwin, D., Pham-Van-Diep, G. and Muntz, E. P., “Nonequalibrium Gas Flow. I: A Detailed Validation of Monte Carlo Direct Simulation for Monatomic Gases,” Phys. Fluids A, 3, pp. 697-705, 1991.
14. Bird, G. A., “Monte Carlo Simulation of Gas Flows,” Ann. Rev. Fluid Mech., 10, pp. 11-31, 1978.
15. Muntz, E. P., “Rarefied Gas Dynamics,” Ann. Rev. Fluid Mech., 21, pp. 387-417, 1989.
16. Cheng, H. K., “Perspectives on Hypersonic Viscous Flow Research,” Ann. Rev. Fluid Mech., 25, pp. 455-484, 1993.
17. Cheng, H. K. and Emmanuel, G., “Perspectives on Hypersonic Nonequilibrium Flow,” AIAA J., 33, pp. 385-400, 1995.
18. Bird, G. A., “Recent Advances and Current Challenges for DSMC,” Comput. Math. Appl., 35, pp. 1-14, 1998.
19. Oh, C. K., Oran, E. S. and Sinkovits, R. S., “Computations of High-Speed, High Knudsen Number Microchannel Flows,” Journal of Thermophysics and Heat Transfer, 11, pp. 497-505, 1997.
20. Piekos, E. S. and Breuer, K. S., “Numerical Modeling of Micromechanical Devices Using the Direct Simulation Monte Carlo Method,” Journal of Fluids engineering, 118, pp. 464-469, 1995.
21. Xue, H., Fan, Q. and Shu, C., “Prediction of Microchannel Flows Using Direct Simulation Monte Carlo,” Probabilistic Eng. Mech., 15, pp. 213-219, 2000.
22. Sun, H. and Faghri, M., “Effects of Rarefaction and Compressibility of Gaseous Flow in Microchannel Using DSMC,” Numerical Heat Transfer, Part A, 38, pp. 153-168, 2000.
23. Sun, H. and Faghri, M., “Effect of Surface Roughness on Nitrogen Flow in a Microchannel Using the Direct Simulation Monte Carlo Method,” Numerical Heat Transfer, Part A, 43, pp.1-8, 2003.
24. Nance, R. P., Hash, D. and Hassan, H. A., “Role of Boundary Conditions in Monte Carlo Simulation of MEMS Devices,” Journal of Thermophysics and Heat Transfer, 12, pp. 447-449, 1998.
25. Fan, J. and Shen, C., “Statistical Simulation of Low-Speed Rarefied Gas Flows, Journal of Computational Physics, 167, pp. 393-412, 2001.
26. Cai, C., Boyd, I. D. and Fan, J., “Direct Simulation Methods for Low-Speed Microchannel Flows,” J. Thermophys. Heat Transfer, 14, pp. 368-378, 2000.
27. Liou, W. W. and Fang, Y. C., “Implicit Boundary Conditions for Direct Simulation Monte Carlo Method in MEMS Flows Predictions,” Computer Modeling in Engineering & Science, 1, pp. 119-128, 2000.
28. Fang, Y. C. and Liou, W. W., “Computations of the Flow and Heat Transfer in Microdevices Using DSMC with Implicit Boundary Conditions,” Journal of Heat Transfer, 124, pp. 338-345, 2002.
29. Wu, J. S., Lee, F. and Wong, S. C., “Pressure Boundary Treatment in Micromechanical Devices Using the Direct Simulation Monte Carlo Method,” JSME International, Series B, 44, pp. 439-450, 2001.
30. Bird, G. A., “Monte Carlo Simulation in an Engineering Context,” Progr. Astro. Aero., 74, pp. 239-255, 1981.
31. Bird, G. A., “A Monte Carlo Simulation in an Engineering Context,” Prog. Astronaut. Aeronaut., 74, pp. 239-255, 1992.
32. Koura, K. and Matsumoto, H., “Variable Soft Sphere Molecular Model for Inverse-Power-Law or Lennard-Jones Potential,” Phys. Rev. A, 3, pp. 2459-2465, 1991.
33. Koura, K. and Matsumoto, H., “Variable Soft Sphere Molecular Model for Air Species,” Phys. Rev. A, 3, pp. 1083-1085, 1992.
34. Bird, G. A., “Perception of Numerical Methods in Rarefied Gas Dynamics,” Progr. Astro. Aero., 118, pp. 211-226, 1989.
35. Borgnakke, C. and Larsen, P. S., “Statistical Collision Model for Monte Carlo Simulation of Polyatomic Gas Mixture,” J. Comput. Phys., 18, pp. 405-420, 1975.
36. Tollmien, W., “Berechnung Turbulenter Ausbreitungsvorgange,” Zeitschrigt fur Angewandte Mathematik und Mechanik, 6, pp. 468-478, 1926.
37. Gortler, H., “Brechnung von Aufgaben der Freien Turbulenz auf Grund Eines Neuen Naherungsansatzes,” Zeitschrigt fur Angewandte Mathematik und Mechanik, 22, pp. 244-254, 1942.
38. Lee, S. C. and Harsha, P. T., “Use of Turbulent Kinetic Energy in Free Mixing Studies,” AIAA J., 8, pp. 1026-1032, 1970.
39. Spencer, B. W. and Jones, B. C., “Statistical Investigation of Pressure and Velocity Fields in the Turbulent Two-Stream Mixing Layer,” AIAA paper 71-613, 1971.
40. Hong, Z. C., “Turbulent Reacting Flows According to a Kinetic Theory,” Ph.D. Thesis, Dept. of Mechanical Engineering, The University of Illinois, Illinois, U.S.A., 1975.
41. Jones, I. S. F., “The Maintenance of Turbulent Shear Stress in a Mixing Layer,” J. Fluid Mech., 74, pp. 269-295, 1976.
42. Mohammadian, S., Saiy, M. and Peorless, S. J., “Fluid Mixing with Unequal Free-Stream Turbulence Intensities,” J. Fluids Eng.-Trans. ASME, 98, pp. 229-242, 1976.
43. Batt, R. G., “Turbulent Mixing of Passive and Chemically Reacting Species in a Low-Speed Shear Layer,” J. Fluid Mech., 82, pp. 53-95, 1977.
44. Bywater, R. J., “Velocity Space Description of Certain Turbulent Free Shear Flow Characteristics,” AIAA J., 19, pp. 969-975, 1981.
45. Hong, Z. C. and Lai, Z. C., “On the Mixing Analysis of a Free Turbulence Shear Layer,” The Chinese Journal of Mechanics, 1, pp. 25-33, 1983.
46. Haworth, D. C. and Pope, S. B., “A Generalized Langevin Model for Turbulent Free Shear Flows,” Phys. Fluids, 29, pp. 387-405, 1986.
47. Hong, Z. C. and Chen, M. H., “Statistical Model of a Self-Similar Turbulent Plane Shear Layer,” J. Fluids Eng.-Trans. ASME, 120, pp. 263-273, 1998.
48. Sandham, N. D. and Reynold, W. C., “Compressible Mixing Layer: Linear Theory and Direct Simulation,” AIAA J., 28, pp. 618-624, 1990.
49. Tang, W., Komerath, N. M. and Sankar, L. N., “Numerical Simulation of the Growth of Instabilities in Supersonic Free Shear Layers,” J. Propulsion Power, 6, pp. 455-460, 1990.
50. Drummond, J. P., Carpenter, M. H. and Riggins, D. W., “Mixing and Mixing Enhancement in Supersonic Reacting Flowfields,” Proc. in Astronautics and Aeronautics, High-Speed Flight Propulsion Systems, edited by Murthy, S. N. B. and Curran, E. T., 125137, pp. 383-455, 1991.
51. Chinzei, N., Masuya, G., Komuro, T., Murakami, A. and Kudou, K., “Spreading of Two-Stream Supersonic Turbulent Mixing Layers,” Phys. Fluids, 29, pp. 1345-1347, 1986.
52. Papamoschou, D. and Roshko, A., “The Compressible Turbulent Shear Layer: an Experimental Study,” J. Fluid Mech., 197, pp. 453-477, 1988.
53. Goebel, S. G. and Dutton, J. C., “Experimental Study of Compressible Turbulent Mixing Layers,” AIAA J., 29, pp. 538-546, 1991.
54. Elliott, G. S., Samimy, M. and Arnette, S. A., “Study of Compressible Mixing Layers Using Filtered Raylaigh Scattering Based Visualizations,” AIAA J., 30, pp. 2567-2569, 1992.
55. Clemens, N. T. and Mungal, M. G., “Large-Scale Structure and Entrainment in the Supersonic Mixing Layer,” J. Fluid Mech., 284, pp. 171-216, 1995.
56. Buttsworth, D. R., Morgan, R. G. and Jones, T. V., “A Gun Tunnel Investigation of Hypersonic Free Shear Layers in a Planar Duct,” J. Fluid Mech., 299, pp. 133-152, 1995.
57. Mansour, M. Malek, Garcia, A., Lie, G. C. and Clementi, E., “Fluctuating Hydrodynamics in a Dilute Gas,” Phy. Rev. Lett., 58, pp. 874-877, 1987.
58. Garcia, A. L., Mansour, M. Malek, Lie, G. C., Mareshal, M. and Clementi, E., “Hydrodynamic Fluctuations in a Dilute Gas under Shear,” Phys. Rev. A, 36, pp. 4348-4355, 1987.
59. Novopashin, S. A. and Perepelkin, A. L., “Turbulence in Rarefied Gases,” Proc. Of 17th Int. Symp. On Rarefied Gas Dynamics, Ed. By Alfred E. Beylich, pp. 191-197, 1991.
60. Bird, G. A., “The Velocity Distribution Function within a Shock Wave,” J. Fluid Mech., 30, pp. 479-487, 1967.
61. Stefanov, S. K., Boyd, I. D. and Cai, C. P., “Monte Carlo Analysis of Macroscopic Fluctuations in Rarefied Hypersonic Flow around a Cylinder,” Phys. Fluids, 12, pp. 1226-1239, 2000.
62. Hong, Z. C., Fu, W. A. and Duh, W. C., “The Momentum Fluctuation Correlations in Rarefied Free Shear Layer,” Transactions of Aeronautical and Astronautical Society of the Republic of China, 30, pp. 77-86, 1998.
63. Hong, Z. C., Zhen, C. E. and Yang, C. Y., “A Pdf Description of Momentum Fluctuation Correlations of a Rarefied Free Shear Layer,” Journal of Mechanics, 22, pp. 85-92, 2006.
64. O’Connor L., “MEMS: Microelectromechanical System,” Mechanical Engineering, 114, pp. 40-47, 1992.
65. Trimmer, W. S. N., “Microrobots and Micromechanical System,” Sensor & Actuators, 19, pp. 267-287, 1989.
66. Scott, W. B., “Micro-Machines Hold Promise for Aerospace,” Aviation Week & Space Technology, 138, pp. 36-39, 1993.
67. Howe, R. T., Muller, R. S., Gabreil, K. J. and Trimmer, W. S. N., “Silicon Micromechanics: Sensors and Actuators on a Chip,” IEEE Spectrum, 27, pp. 29-35, 1990.
68. Pfahler, J., Harley, J., Bau, H. and Zemel, J., “Gas and Liquid Flow in Small Channel,” Winter Annual Meeting of the American Society of Mechanical Engineers, Atlanta, American Society of Mechanical Engineers, 32, pp. 49-60,1991.
69. Pong, K. C., Ho, C. M., Liu, J. Q., and Tai, Y. C., “Non-Linear Pressure Distribution in Uniform Microchannels,” Proc. of the 1994 International Mechanical Engineering Congress and Exposition, Chicago, American Society of Mechanical Engineers, 197, pp. 51-56, 1994.
70. Arkilic, E. B., Breuer, K. S., and Schmidt, M. A., “Gaseous Flow in Microchannels,” Proc. of the 1994 International Mechanical Engineering Congress and Exposition, Chicago, American Society of Mechanical Engineers, 197, pp. 57-66, 1994.
71. Zhen, C. E, Hong, Z. C., Lin, Y. J. and Hong, N. T., “Comparison of 3-D and 2-D DSMC Heat Transfer Calculations of Low-Speed Short Microchannel Flows,” Numerical Heat Transfer, Part A, 55, pp. 239-250, 2007.
指導教授 楊建裕(Chien-Yuh Yang) 審核日期 2007-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明