參考文獻 |
1. Oran, E. S., Oh, C. K. and Cybyk, B. Z., “Direct Simulation Monte Carlo: Recent Advances and Applications,” Ann. Rev. Fluid Mech., 30, pp. 403-441, 1998.
2. Schaaf, S. A. and Chambre, P. L., Flow of Rarefied Gases, Princeton University Press, Princeton, New Jersey, 1961.
3. Bobylev, A. V., “Exact Solutions of The Nonlinear Boltzmann Equation and of its Models,” Fluid Mech. Soviet Res., 13, pp. 105-110, 1984.
4. Cercignani, C., Rarefied Gas Dynamics. From Basic Concepts to Actual Calculations, Cambridge University Press, Cambridge, 2000.
5. Kogan. M. N., Rarefied Gas Dynamics, Plenum Press, New York, 1969.
6. Aristov, V. V., Direct Method for Solving the Boltzmann Equation and Study of Nonequilibrium Flows, Kluwer Academic Publishers, Dordrecht, 2001.
7. Bird, G. A., Molecular Gas Dynamics and the Direct Simulation of Gas Flow, Clarenden Press, Oxford, UK, 1994.
8. Bird, G. A., “Direct Simulation of the Boltzmann Equation,” Phys. Fluids, 13, pp. 2676-2681, 1970.
9. Nanbu, K., “”Theoretical Basis on the Direct Monte Carlo Method,” Rarefied Gas Dynamics, Boffi, V. and Cercignani, C. (editor), Teubner, Stuttgart, 1, 1986.
10. Wagner, W., “A Convergence proof for Bird’s Direct Simulation Monte Carlo Method for the Boltzmann Equation,” Journal Stat Physics, 66, pp. 1011-1044, 1992.
11. Bird, G. A., “Approach to Translational Equilibrium in a Rigid Sphere Gas,” Phys. Fluids, 6, pp. 1518-1519, 1963.
12. Pham-Van-Diep, G., Erwin, D. and Muntz, E. P., “Nonequilibrium Molecular Motion in a Hypersonic Shock Wave,” Science, 245, pp. 624-626, 1989.
13. Erwin, D., Pham-Van-Diep, G. and Muntz, E. P., “Nonequalibrium Gas Flow. I: A Detailed Validation of Monte Carlo Direct Simulation for Monatomic Gases,” Phys. Fluids A, 3, pp. 697-705, 1991.
14. Bird, G. A., “Monte Carlo Simulation of Gas Flows,” Ann. Rev. Fluid Mech., 10, pp. 11-31, 1978.
15. Muntz, E. P., “Rarefied Gas Dynamics,” Ann. Rev. Fluid Mech., 21, pp. 387-417, 1989.
16. Cheng, H. K., “Perspectives on Hypersonic Viscous Flow Research,” Ann. Rev. Fluid Mech., 25, pp. 455-484, 1993.
17. Cheng, H. K. and Emmanuel, G., “Perspectives on Hypersonic Nonequilibrium Flow,” AIAA J., 33, pp. 385-400, 1995.
18. Bird, G. A., “Recent Advances and Current Challenges for DSMC,” Comput. Math. Appl., 35, pp. 1-14, 1998.
19. Oh, C. K., Oran, E. S. and Sinkovits, R. S., “Computations of High-Speed, High Knudsen Number Microchannel Flows,” Journal of Thermophysics and Heat Transfer, 11, pp. 497-505, 1997.
20. Piekos, E. S. and Breuer, K. S., “Numerical Modeling of Micromechanical Devices Using the Direct Simulation Monte Carlo Method,” Journal of Fluids engineering, 118, pp. 464-469, 1995.
21. Xue, H., Fan, Q. and Shu, C., “Prediction of Microchannel Flows Using Direct Simulation Monte Carlo,” Probabilistic Eng. Mech., 15, pp. 213-219, 2000.
22. Sun, H. and Faghri, M., “Effects of Rarefaction and Compressibility of Gaseous Flow in Microchannel Using DSMC,” Numerical Heat Transfer, Part A, 38, pp. 153-168, 2000.
23. Sun, H. and Faghri, M., “Effect of Surface Roughness on Nitrogen Flow in a Microchannel Using the Direct Simulation Monte Carlo Method,” Numerical Heat Transfer, Part A, 43, pp.1-8, 2003.
24. Nance, R. P., Hash, D. and Hassan, H. A., “Role of Boundary Conditions in Monte Carlo Simulation of MEMS Devices,” Journal of Thermophysics and Heat Transfer, 12, pp. 447-449, 1998.
25. Fan, J. and Shen, C., “Statistical Simulation of Low-Speed Rarefied Gas Flows, Journal of Computational Physics, 167, pp. 393-412, 2001.
26. Cai, C., Boyd, I. D. and Fan, J., “Direct Simulation Methods for Low-Speed Microchannel Flows,” J. Thermophys. Heat Transfer, 14, pp. 368-378, 2000.
27. Liou, W. W. and Fang, Y. C., “Implicit Boundary Conditions for Direct Simulation Monte Carlo Method in MEMS Flows Predictions,” Computer Modeling in Engineering & Science, 1, pp. 119-128, 2000.
28. Fang, Y. C. and Liou, W. W., “Computations of the Flow and Heat Transfer in Microdevices Using DSMC with Implicit Boundary Conditions,” Journal of Heat Transfer, 124, pp. 338-345, 2002.
29. Wu, J. S., Lee, F. and Wong, S. C., “Pressure Boundary Treatment in Micromechanical Devices Using the Direct Simulation Monte Carlo Method,” JSME International, Series B, 44, pp. 439-450, 2001.
30. Bird, G. A., “Monte Carlo Simulation in an Engineering Context,” Progr. Astro. Aero., 74, pp. 239-255, 1981.
31. Bird, G. A., “A Monte Carlo Simulation in an Engineering Context,” Prog. Astronaut. Aeronaut., 74, pp. 239-255, 1992.
32. Koura, K. and Matsumoto, H., “Variable Soft Sphere Molecular Model for Inverse-Power-Law or Lennard-Jones Potential,” Phys. Rev. A, 3, pp. 2459-2465, 1991.
33. Koura, K. and Matsumoto, H., “Variable Soft Sphere Molecular Model for Air Species,” Phys. Rev. A, 3, pp. 1083-1085, 1992.
34. Bird, G. A., “Perception of Numerical Methods in Rarefied Gas Dynamics,” Progr. Astro. Aero., 118, pp. 211-226, 1989.
35. Borgnakke, C. and Larsen, P. S., “Statistical Collision Model for Monte Carlo Simulation of Polyatomic Gas Mixture,” J. Comput. Phys., 18, pp. 405-420, 1975.
36. Tollmien, W., “Berechnung Turbulenter Ausbreitungsvorgange,” Zeitschrigt fur Angewandte Mathematik und Mechanik, 6, pp. 468-478, 1926.
37. Gortler, H., “Brechnung von Aufgaben der Freien Turbulenz auf Grund Eines Neuen Naherungsansatzes,” Zeitschrigt fur Angewandte Mathematik und Mechanik, 22, pp. 244-254, 1942.
38. Lee, S. C. and Harsha, P. T., “Use of Turbulent Kinetic Energy in Free Mixing Studies,” AIAA J., 8, pp. 1026-1032, 1970.
39. Spencer, B. W. and Jones, B. C., “Statistical Investigation of Pressure and Velocity Fields in the Turbulent Two-Stream Mixing Layer,” AIAA paper 71-613, 1971.
40. Hong, Z. C., “Turbulent Reacting Flows According to a Kinetic Theory,” Ph.D. Thesis, Dept. of Mechanical Engineering, The University of Illinois, Illinois, U.S.A., 1975.
41. Jones, I. S. F., “The Maintenance of Turbulent Shear Stress in a Mixing Layer,” J. Fluid Mech., 74, pp. 269-295, 1976.
42. Mohammadian, S., Saiy, M. and Peorless, S. J., “Fluid Mixing with Unequal Free-Stream Turbulence Intensities,” J. Fluids Eng.-Trans. ASME, 98, pp. 229-242, 1976.
43. Batt, R. G., “Turbulent Mixing of Passive and Chemically Reacting Species in a Low-Speed Shear Layer,” J. Fluid Mech., 82, pp. 53-95, 1977.
44. Bywater, R. J., “Velocity Space Description of Certain Turbulent Free Shear Flow Characteristics,” AIAA J., 19, pp. 969-975, 1981.
45. Hong, Z. C. and Lai, Z. C., “On the Mixing Analysis of a Free Turbulence Shear Layer,” The Chinese Journal of Mechanics, 1, pp. 25-33, 1983.
46. Haworth, D. C. and Pope, S. B., “A Generalized Langevin Model for Turbulent Free Shear Flows,” Phys. Fluids, 29, pp. 387-405, 1986.
47. Hong, Z. C. and Chen, M. H., “Statistical Model of a Self-Similar Turbulent Plane Shear Layer,” J. Fluids Eng.-Trans. ASME, 120, pp. 263-273, 1998.
48. Sandham, N. D. and Reynold, W. C., “Compressible Mixing Layer: Linear Theory and Direct Simulation,” AIAA J., 28, pp. 618-624, 1990.
49. Tang, W., Komerath, N. M. and Sankar, L. N., “Numerical Simulation of the Growth of Instabilities in Supersonic Free Shear Layers,” J. Propulsion Power, 6, pp. 455-460, 1990.
50. Drummond, J. P., Carpenter, M. H. and Riggins, D. W., “Mixing and Mixing Enhancement in Supersonic Reacting Flowfields,” Proc. in Astronautics and Aeronautics, High-Speed Flight Propulsion Systems, edited by Murthy, S. N. B. and Curran, E. T., 125137, pp. 383-455, 1991.
51. Chinzei, N., Masuya, G., Komuro, T., Murakami, A. and Kudou, K., “Spreading of Two-Stream Supersonic Turbulent Mixing Layers,” Phys. Fluids, 29, pp. 1345-1347, 1986.
52. Papamoschou, D. and Roshko, A., “The Compressible Turbulent Shear Layer: an Experimental Study,” J. Fluid Mech., 197, pp. 453-477, 1988.
53. Goebel, S. G. and Dutton, J. C., “Experimental Study of Compressible Turbulent Mixing Layers,” AIAA J., 29, pp. 538-546, 1991.
54. Elliott, G. S., Samimy, M. and Arnette, S. A., “Study of Compressible Mixing Layers Using Filtered Raylaigh Scattering Based Visualizations,” AIAA J., 30, pp. 2567-2569, 1992.
55. Clemens, N. T. and Mungal, M. G., “Large-Scale Structure and Entrainment in the Supersonic Mixing Layer,” J. Fluid Mech., 284, pp. 171-216, 1995.
56. Buttsworth, D. R., Morgan, R. G. and Jones, T. V., “A Gun Tunnel Investigation of Hypersonic Free Shear Layers in a Planar Duct,” J. Fluid Mech., 299, pp. 133-152, 1995.
57. Mansour, M. Malek, Garcia, A., Lie, G. C. and Clementi, E., “Fluctuating Hydrodynamics in a Dilute Gas,” Phy. Rev. Lett., 58, pp. 874-877, 1987.
58. Garcia, A. L., Mansour, M. Malek, Lie, G. C., Mareshal, M. and Clementi, E., “Hydrodynamic Fluctuations in a Dilute Gas under Shear,” Phys. Rev. A, 36, pp. 4348-4355, 1987.
59. Novopashin, S. A. and Perepelkin, A. L., “Turbulence in Rarefied Gases,” Proc. Of 17th Int. Symp. On Rarefied Gas Dynamics, Ed. By Alfred E. Beylich, pp. 191-197, 1991.
60. Bird, G. A., “The Velocity Distribution Function within a Shock Wave,” J. Fluid Mech., 30, pp. 479-487, 1967.
61. Stefanov, S. K., Boyd, I. D. and Cai, C. P., “Monte Carlo Analysis of Macroscopic Fluctuations in Rarefied Hypersonic Flow around a Cylinder,” Phys. Fluids, 12, pp. 1226-1239, 2000.
62. Hong, Z. C., Fu, W. A. and Duh, W. C., “The Momentum Fluctuation Correlations in Rarefied Free Shear Layer,” Transactions of Aeronautical and Astronautical Society of the Republic of China, 30, pp. 77-86, 1998.
63. Hong, Z. C., Zhen, C. E. and Yang, C. Y., “A Pdf Description of Momentum Fluctuation Correlations of a Rarefied Free Shear Layer,” Journal of Mechanics, 22, pp. 85-92, 2006.
64. O’Connor L., “MEMS: Microelectromechanical System,” Mechanical Engineering, 114, pp. 40-47, 1992.
65. Trimmer, W. S. N., “Microrobots and Micromechanical System,” Sensor & Actuators, 19, pp. 267-287, 1989.
66. Scott, W. B., “Micro-Machines Hold Promise for Aerospace,” Aviation Week & Space Technology, 138, pp. 36-39, 1993.
67. Howe, R. T., Muller, R. S., Gabreil, K. J. and Trimmer, W. S. N., “Silicon Micromechanics: Sensors and Actuators on a Chip,” IEEE Spectrum, 27, pp. 29-35, 1990.
68. Pfahler, J., Harley, J., Bau, H. and Zemel, J., “Gas and Liquid Flow in Small Channel,” Winter Annual Meeting of the American Society of Mechanical Engineers, Atlanta, American Society of Mechanical Engineers, 32, pp. 49-60,1991.
69. Pong, K. C., Ho, C. M., Liu, J. Q., and Tai, Y. C., “Non-Linear Pressure Distribution in Uniform Microchannels,” Proc. of the 1994 International Mechanical Engineering Congress and Exposition, Chicago, American Society of Mechanical Engineers, 197, pp. 51-56, 1994.
70. Arkilic, E. B., Breuer, K. S., and Schmidt, M. A., “Gaseous Flow in Microchannels,” Proc. of the 1994 International Mechanical Engineering Congress and Exposition, Chicago, American Society of Mechanical Engineers, 197, pp. 57-66, 1994.
71. Zhen, C. E, Hong, Z. C., Lin, Y. J. and Hong, N. T., “Comparison of 3-D and 2-D DSMC Heat Transfer Calculations of Low-Speed Short Microchannel Flows,” Numerical Heat Transfer, Part A, 55, pp. 239-250, 2007. |