國立中央大學八十四學年度碩士班研究生入學試題卷

所別: 資訊管理研究所 引乙組 科目: 統計學 共2頁第一頁

第一部份:單選題 (每題2分,計10分)

- 1. The term heteroskedasticity:
 - (a) refers to autocorrelated error terms.
 - (b) refers to error terms not having the same variance.
 - (c) can only be applied when there is more than one independent variable.
 - (d) all of the above.

2. A randomized block design

- (a) is an extension of the paired t-test.
- (b) does not require assuming that block variances are equal.
- (c) can be performed even if the number of blocks exceeds n.
- (d) is a nonparametric technique.
- 3. A one-sided test at the 5% level of significance will;
 - (a) reject the null hypothesis for test statistic values beyond 1.96.
 - (b) reject the null hypothesis for test statistic values beyond 1.645.
 - (c) will have a minimum power of 0.05.
 - (d) will reject the null hypothesis 5 percent of the time.
- 4. In testing whether the proportion of defectives is within the allowable limit of 2%, a quality control manager selects a random sample of 400. His practice has been to use a significance level of 5%.
 - (a) He will reject the null hypothesis if more than 8 defectives are found.
 - (b) He will reject the null hypothesis if more than 13 defectives are found.
 - (c) He will not reject the null hypothesis only if fewer than 8 defectives are found.
 - (d) He will only reject the null hypothesis if more than 14 defectives are found.
- 5. The ratio of two random variables, each of which follows a Chi-square distribution, will follow a:
 - (a) normal distribution.
 - (b) Chi-square distribution.
 - (c) F-distribution.
 - (d) t-distribution.

第二部份:計算及問答題(計90分)

- I. 何謂 Poisson 分配? 並說明Poisson 分配與二項分配在使用上的差異。(10分)
- 2. 何謂無母數統計方法?其優點及缺點有哪些?(10分)
- 3. 常態母群體 N(μ,σ²),σ²=9。就假說檢定 Hg:μ=1,Ha:μ>1。(10分)
 - (a)若 n=16, x=2.5, 求 p-value。
 - (b)若 $\alpha = 0.05, n=16$ 和 $\overline{x} = 2.5$ 時,其檢定結果如何?
 - (c)若在 α=0.05 下,试求 power of test at μ=1.5。
- (a)請說明那些問題可以利用變異數分析(analysis of variance)來處理,並 說明使用變異數分析的基本假設(assumptions)。 (5分)
 - (b)變異數分析中若每一樣本資料均加上一定數,是否會影響其分析結果?若每一樣本資料均乘上一非零定數,是否會影響其分析結果?請說明。 (5分)
- 5. Two independent random samples selected from normal populations $N(\mu_i, \sigma_i^2)$, i=1,2, produced the accompanying data summary

sample 1:
$$\bar{x}_1 = 22.1$$
, $s_1 = 4.8$, and $n_1 = 16$

sample 2:
$$\overline{x}_2 = 18.2$$
, $s_2 = 3.5$, and $n_2 = 12$

(15分)

- (a) Do the data contain sufficient evidence to conclude that the two population variances are different? ($\alpha = 0.05$)
- (b) Suppose $\sigma_1 = \sigma_2$. Test the hypothesis H_0 : $\mu_1 = \mu_2$, H_a : $\mu_1 > \mu_2$ at the $\alpha = 0.05$ level of significance.

國立中央大學八十四學年度碩士班研究生入學試題卷

所別: 資訊管理研究所 引乙組 科目: 統計學 共 2 頁 第 2 頁

6. 收集到25組資料點 (data points),以多元回歸方法分析以下模式:

 $y = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + b_4 x_4 + \epsilon$

而此模式之

SSE (誤差項平方和, sum of squared errors) = 1586.2

SSR (回歸項平方和 · sum of squares due to regression) = 6311.7

Total SS (魏平方和, total sum of squares) = 7897.9

- (a) 建立回歸分析的變異數分析表 (ANOVA table) 。 (5分)
- (b) 若顧著水準 $\alpha = 0.01$,試問 x_1 , x_2 , x_3 , x_4 在預測 y 時的 说明能力。 (5分)
- (c) 計算 R² (判定係数)。 (5分)
- 7.為測試甲、乙兩種輪胎的耐磨程度(其數字愈高,表示其磨損愈多), 使用兩種不同方式測試:
 - (a) 第一種方式:將甲、乙兩種輪胎裝置於同一部車子後輪,其測試所得 資料如次表

测试車編號	1	2	3	4	5
輪胎甲	8.8	9.7	9.8	10.6	12.3
輪胎と	8.3	9.1	9.4	10.2	11.8

試問是否有足夠證據説明此兩種輸胎之耐磨程度不一樣?試以完整步驟 (即從 check assumptions 開始)檢定。 (10分)

(b) 第二種方式:將甲、乙兩種輪胎分別裝置於不同車子後輪,其測試所得 _____資料如次表

测试单编號	11	12	13	14	15
輪胎甲	9.8	9.7	8.8	10.6	12.3
輪胎乙	9.4	9.1	8.3	10.2	11.8

試問是否有足夠證據説明此兩種輪胎之耐磨程度不一樣?試以完整步驟 (即從 check assumptions 開始)檢定。(10分)

參考資料:

$F_{0.025,11,15} = 3.01$	$F_{0.05,11,15} = 2.51$	$F_{0.025,12,16} = 2.89$	$F_{0.05,12,16} = 2.42$
$F_{0.025,15,11} = 3.33$	$\mathbf{F}_{0.05,15,11} = 2.72$	$F_{0.025,16,12} = 3.16$	$F_{0.05,16,12} = 2.61$
$F_{0.01,4,20} = 4.43$	$F_{0.01,5,24} = 3.90$	$F_{0.01,5,21}=4.04$	$F_{0.05,4,20} = 2.87$
$F_{0.05,5,24} = 2.62$	$F_{0.05,5,21}=2.68$		

$z_{0.1685} = 0.96$	$z_{0.166} = 0.97$	$z_{0.1635} = 0.98$	z _{0.1611} =0.99
$z_{0.0062} = 2.5$	$z_{0.05} = 1.645$	z _{0.025} =1.96	z _{0.0228} = 2

$t_{26,0.025} = 2.056$	$t_{26,0.05} = 1.706$	$t_{27, 0.025} = 2.052$	t _{27, 0.05} =1.703
$t_{28,0.025} = 2.048$	$t_{28,0.05} = 1.701$	$t_{4.0.025} = 2.776$	$t_{5.0.025} = 2.571$
$t_{8.0.025} = 2.306$	$t_{9,0.025} = 2.262$	$t_{4,0.05} = 2.132$	$t_{3.0.05} = 2.015$
$t_{8,0.05} = 1.860$	$t_{9,0.05} = 1.833$		

参考用