博碩士論文 90343015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:84 、訪客IP:3.144.12.246
姓名 鍾政霖(Jeng-Lin Chung)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 氧化鋅摻鈦透明導電薄膜之性質研究
(Structural, electrical and optical properties of TiO2 -doped ZnO films prepared by radio frequency magnetron sputtering)
相關論文
★ 熱塑性聚胺酯複合材料製備燃料電池 雙極板之研究★ 以穿刺實驗探討鋰電池安全性之研究
★ 金屬多孔材應用於質子交換膜燃料電池內流道的研究★ 不同表面處理之金屬發泡材於質子交換膜燃料電池內的研究
★ PEMFC電極及觸媒層之電熱流傳輸現象探討★ 熱輻射對多孔性介質爐中氫、甲烷燃燒之影響
★ 高溫衝擊流熱傳特性之研究★ 輻射傳遞對磁流體自然對流影響之研究
★ 小型燃料電池流道設計與性能分析★ 雙重溫度與濃度梯度下多孔性介質中磁流體之雙擴散對流現象
★ 氣體擴散層與微孔層對於燃料電池之影響與分析★ 應用於PEMFC陰極氧還原反應之Pt-Cu雙元觸媒製備及特性分析
★ 加熱對肌肉組織之近紅外光光學特性影響之研究★ 超音速高溫衝擊流之暫態分析
★ 質子交換膜燃料電池陰極端之兩相流模擬與研究★ 矽相關半導體材料光學模式之實驗量測儀器發展
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於透明導電膜廣泛應用於光電元件中,尤其氧化鋅薄膜可以同時具有光與電性質,所以許多學者認為可以取代ITO薄膜。在本實驗以鈦摻入氧化鋅(TiO2 -doped ZnO)薄膜來研究其結構、電及光學性質。沉積TiO2 -doped ZnO薄膜在氬氣氣氛下,在較低之沉積壓力與較高之基板溫度,其結晶性排列較緊密,有較低之電阻率值為2.50 × 10-3 Ω-cm,而鈦摻雜量為1.34 wt %。TiO2 -doped ZnO薄膜在可見光區其光穿透率皆可達到80%以上,而其光能隙與載子濃度有關,其範圍為3.30~3.48 eV。為了提升元件效率,更進一步降低電阻率是必行之路,由於氫元素可以改善氧化鋅導電特性,因此藉由Ar+H2氣氛來沉積TiO2 -doped ZnO薄膜,氫氣比例為15%時,有最低之電阻率為6.50 × 10-4 Ω-cm,而鈦摻雜量為1.28 wt % ;不同氫含量比例對於TiO2 -doped ZnO薄膜之穿透率皆可達到85%以上,其能隙被寬化由3.42 eV增加至3.72 eV,隨著載子濃度增加而增加。在氫氬混合氣氛下摻鎂對於TiO2 -doped ZnO薄膜之性質分析,在340 ~ 350 之間有(002)繞射峰,隨著MgO摻雜含量增加,其(002)繞射峰強度漸漸減少;由實驗分析其電阻率隨著鎂含量增加而增加;在可見光區,光穿透率皆可達到85%以上;可以觀察到隨著鎂含量增加,其光學吸收限向著短波長方向偏移。
摘要(英) Transparent conducting oxide films have lately attracted a great deal of attention because of their properties of low electrical resistivity and high transmittance in the visible region. Impurity-doped ZnO films, with their good electrical and optical properties, are a promising alternative to replace ITO films for transparent electrode applications.
TiO2-doped zinc oxide thin films were deposited on glass substrates by radio frequency (RF) magnetron sputtering with TiO2-doped ZnO targets in an argon atmosphere. The crystalline structure of the TiO2-doped ZnO films gradually improved as the working pressure was lowered and the substrate temperature was raised. The lowest electrical resistivity for the TiO2-doped ZnO films was obtained when the Ti addition was 1.34 wt%; its value was 2.50 × 10-3 Ω-cm. The transmittance of the TiO2-doped ZnO films in the visible wavelength range was more than 80 %. The optical energy gap was related to the carrier concentration, and was in the range of 3.30-3.48 eV.
Highly conductive, transparent TiO2-doped ZnO films are grown by radio frequency (RF) magnetron sputtering in ambient hydrogen-argon (Ar+H2) gas at a temperature of 150 0C. Van de Walle has shown theoretically that hydrogen can act as a shallow donor to become a source of electrical conductivity. The lowest resistivity obtained is 6.50 × 10-4 Ω-cm with 1.28 wt% Ti and 15% H2 content in Ar. The optical transmittance for TiO2-doped ZnO films in the visible region is about 85 %. Due to the Burstein-Moss effect, the energy band gap increases with the carrier concentration.
Polycrystalline TiO2-doped ZnO films doped with MgO in ambient hydrogen-argon (Ar+H2) gas are prepared on glass substrates by RF magnetron sputtering. Increasing the Mg content from 0 to 17.75 wt% increases the electrical resistivity from 6.50×10-4 Ω-cm to the high resistivity. TiO2-doped ZnO films doped with MgO are an excellent wide band gap material, and its band gap varies with Mg content.
關鍵字(中) ★ 氧化鋅
★ 電阻率
★ 能隙
關鍵字(英) ★ ZnO
★ resistivity
★ energy band gap
論文目次 目錄
摘要…………………………………………………………...Ⅰ
abstract………………………………………………………...Ⅲ
表目錄………………………………………………………...Ⅷ
圖目錄………………………………………………………...Ⅸ
第一章 緒論…………………………………………………...1
1.1 前言………………………………………………………………….1
1.2 相關研究…………………………………………………………….2
1.3 理論基礎………………………………………………………….....8
1.3.1 電漿……………………………………………………………..8
1.3.2濺鍍理論………………………………………………………..10
1.3.3濺鍍系統………………………………………………………..13
1.3.4 磁控濺鍍系統…………………………………………………14
1.4 研究動機與目的…………………………………………………...15
第二章 系統設備與實驗方法……………………………….23
2.1系統設備…………………………………………………………....23
2.2 粉末配製與靶材製程……………………………………………...25
2.2.1 粉末配製………………………………………………………25
2.2.2 靶材製程………………………………………………………25
2.2.3 試片準備………………………………………………………27
2.3 實驗流程…………………………………………………………...28
2.3.1 微結構與成分分析……………………………………………28
2.3.2 電性分析………………………………………………………29
2.3.3 光學性質分析…………………………………………………30
第三章 在氬氣氣氛下對於氧化鋅摻鈦薄膜之性質研究….36
3.1 濺鍍參數與條件設定……………………………………………...36
3.2 TiO2 -doped ZnO薄膜之結構特性分析…………………………...37
3.2.1 摻鈦含量對於氧化鋅薄膜結構之影響………………………37
3.2.2 基板溫度與沉積壓力對於TiO2 -doped ZnO薄膜之影響…..38
3.3 氧化鋅摻鈦薄膜之導電特性分析………………………………...41
3.3.1摻鈦含量對於氧化鋅薄膜之導電性質影響…………………..41
3.3.2沉積壓力與基板溫度對於氧化鋅薄膜之導電性質影響……..43
3.4 氧化鋅摻鈦薄膜之光性分析……………………………………...44
第四章 在氫氬混合氣氛下對於氧化鋅摻雜薄膜之性質研究……………………………………………………………...61
4.1 濺鍍參數與條件設定………………………………………….......62
4.2 TiO2 -doped ZnO之結構特性分析…………………………………62
4.2.1摻鈦含量與氬氫混和氣氛對於氧化鋅薄膜結構之影響……..62
4.2.2 沉積壓力與基板溫度對於TiO2 -doped ZnO薄膜之影響…...64
4.3 TiO2 -doped ZnO薄膜之導電特性分析……………………………65
4.3.1摻鈦含量與氬氫混和氣氛對於氧化鋅薄膜導電性質之影響..65
4.3.2沉積壓力與基板溫度對於TiO2 -doped ZnO薄膜之導電性質影響.67
4.4 TiO2 -doped ZnO薄膜之光性分析…………………………………69
第五章 在氫氬混合氣氛下摻鎂對於氧化鋅摻鈦薄膜之性質研究…………………………………………………………...88
5.1 濺鍍參數與條件設定……………………………………………...88
5.2 摻鎂含量對於TiO2 -doped ZnO薄膜結構之影響……………….89
5.3 摻鎂含量對於TiO2 -doped ZnO薄膜之導電特性分析………….91
5.4 摻鎂含量對於TiO2 -doped ZnO薄膜之光性分析……………….92
第六章 結論…………………………………………….........99
參考文獻…………………………………………………….101
圖目錄
圖1-1 ZnO之纖鋅礦結構(wurtzite structure) 示意圖………………...19
圖1-2 在不同之電流對電壓操作區間下的放電情形………………..19
圖1-3 正常輝光放電的示意圖………………………………………..20
圖1-4 入射粒子嵌入靶材表面之示意圖……………………………..20
圖1-5 在靶材表面之磁力線分佈與電場方向的示意圖……………..21
圖1-6a 透明導電膜之電阻率比較…………………………………….21
圖1-6b 氧化鋅薄膜之電阻率比較……………………………………22
圖2-1 射頻磁控濺射系統之示意圖…………………………………..31
圖2-2 射頻磁控濺射之設備…………………………………………..32
圖2-3電漿系統之操作設備……………………………………………32
圖2-4 冷卻系統………………………………………………………..33
圖2-5 TiO2 -doped ZnO所燒結之靶材………………………………...33
圖2-6 TiO2 -doped ZnO之燒結曲線圖…………………………..........34
圖2-7 TiO2 -doped ZnO靶材之塊材繞射圖…………………………...34
圖2-8 切割機設備系統…………………………………………..........35
圖2-9 玻璃基材清洗流程圖…………………………………………..35
圖3-1 固定基板溫度為1500C,以不同摻鈦含量之氧化鋅薄膜的X-ray 繞射圖…………………………………………………………………..48
圖3-2 固定基板溫度為2500C,以不同摻鈦含量之氧化鋅薄膜的X-ray 繞射圖…………………………………………………………………..48
圖3-3 TiO2 –doped ZnO薄膜的不同Ti含量與繞射角之變化………..49
圖3-4 TiO2 –doped ZnO薄膜在不同沉積壓力對於繞射峰的半高寬值(Full width at half –maximum, FWHM)之變化………………………..49
圖3-5 TiO2 –doped ZnO薄膜在不同沉積壓力的X-ray 繞射圖……..50
圖3-6 TiO2 –doped ZnO薄膜在不同基板溫度的X-ray 繞射圖……..50
圖3-7 TiO2 –doped ZnO薄膜在不同基板溫度對於繞射峰的半高寬值之變化…………………………………………………………………..51
圖3-8a TiO2 -doped ZnO薄膜之俯視SEM圖(1500C, 15 mTorr)……..52
圖3-8b TiO2 -doped ZnO薄膜之橫截SEM圖(1500C, 15 mTorr)……..52
圖3-8c TiO2 -doped ZnO薄膜之俯視SEM圖(1500C, 5 mTorr)………53
圖3-8d TiO2 -doped ZnO薄膜之橫截SEM圖(1500C, 5 mTorr)………53
圖3-8e TiO2 -doped ZnO薄膜之俯視SEM圖(2500C, 5 mTorr)……....54
圖3-8f TiO2 -doped ZnO薄膜之橫截SEM圖(2500C, 5 mTorr)………54
圖3-9 基板溫度固定為1500C,以不同摻鈦含量影響氧化鋅薄膜之遷移率與載子濃度的變化………………………………………………..55
圖3-10基板溫度固定為1500C,不同摻鈦含量影響氧化鋅薄膜之電阻率變化…………………………………………………………………..55
圖3-11基板溫度固定為2500C,以不同摻鈦含量影響氧化鋅薄膜之遷移率與載子濃度的變化………………………………………………..56
圖3-12基板溫度固定為2500C,不同摻鈦含量影響氧化鋅薄膜之電阻率變化…………………………………………………………………..56
圖3-13 沉積壓力對於TiO2 -doped ZnO薄膜之遷移率與載子濃度的變化…………………………………………………………………….57
圖3-14沉積壓力對於TiO2 -doped ZnO薄膜之電阻率的變化……..57
圖3-15基板溫度對於TiO2 -doped ZnO薄膜之遷移率與載子濃度的變化………………………………………………………………………..58
圖3-16基板溫度對於TiO2 -doped ZnO薄膜之電阻率的變化………58
圖3-17基板溫度固定為1500C,不同鈦含量所沉積的TiO2 -doped ZnO薄膜之穿透光譜圖……………………………………………………..59
圖3-18基板溫度固定為1500C,不同鈦含量的TiO2 -doped ZnO薄膜其α2 對hν的關係圖…………………………………………………...59
圖3-19基板溫度固定為2500C,不同鈦含量所沉積的TiO2 -doped ZnO薄膜之穿透光譜圖……………………………………………………..60
圖3-20基板溫度固定為2500C,不同鈦含量的TiO2 -doped ZnO薄膜其α2 對hν的關係圖…………………………………………………..60
圖4-1 氫元素結合在氧化鋅結構中之示意圖………………………..72
圖4-2 不同摻鈦含量之氧化鋅薄膜的X-ray繞射圖…………………72
圖4-3 對於不同氫含量的TiO2 -doped ZnO薄膜之橫截SEM圖: (a) pure Ar, (b) Ar+15% H2 與 (c)Ar+ 45% H2…………………………...73
圖4-4 不同氫氣比例之TiO2 -doped ZnO薄膜的X-ray繞射圖…….74
圖4-5不同氫氣比例對於TiO2 -doped ZnO薄膜的O 1s能譜………..75
圖4-6不同氫氣比例對於TiO2 -doped ZnO薄膜的Zn 2p能譜………75
圖4-7 不同氫氣比例之TiO2 -doped ZnO薄膜對於繞射角度之變化.76
圖4-8 TiO2 -doped ZnO薄膜在不同沉積壓力的X-ray 繞射圖……...76
圖4-9 TiO2 -doped ZnO薄膜在不同基板溫度的X-ray 繞射圖……...77
圖4-10 不同摻鈦含量對於氧化鋅薄膜之遷移率與載子濃度的變化………………………………………………………………………..78
圖4-11 不同摻鈦含量對於氧化鋅薄膜之電阻率變化………………78
圖4-12 不同氣氛對於氧化鋅薄膜之遷移率與載子濃度的變化……79
圖4-13 不同氣氛對於氧化鋅薄膜之電阻率變化……………………79
圖4-14 不同氫氣比例含量對於TiO2 -doped ZnO薄膜之遷移率與載子濃度的變化…………………………………………………………..80
圖4-15 不同氫氣比例含量對於TiO2 -doped ZnO薄膜之電阻率的變化………………………………………………………………………..80
圖4-16 沉積壓力對於TiO2 -doped ZnO薄膜之遷移率與載子濃度的變化……………………………………………………………………..81
圖4-17 不同沉積壓力對於TiO2 -doped ZnO薄膜之電阻率的變化...81
圖4-18 不同氣氛下,沉積壓力對於TiO2 -doped ZnO薄膜之遷移率與載子濃度的變化………………………………………………………..82
圖4-19不同氣氛下,沉積壓力對於TiO2 -doped ZnO薄膜之電阻率的變化……………………………………………………………………..82
圖4-20 基板溫度對於TiO2 -doped ZnO薄膜之遷移率與載子濃度的變化……………………………………………………………………..83
圖4-21 不同基板溫度對於TiO2 -doped ZnO薄膜之電阻率的變化..83
圖4-22 不同氣氛下,基板溫度對於TiO2 -doped ZnO薄膜之遷移率與載子濃度的變化………………………………………………………..84
圖4-23 不同氣氛下,基板溫度對於TiO2 -doped ZnO薄膜之電阻率的變化……………………………………………………………………..84
圖4-24 不同鈦含量對於TiO2 -doped ZnO薄膜之穿透光譜圖……..85
圖4-25 不同鈦含量的TiO2-doped ZnO薄膜其α2對hν的關係圖…85
圖4-26 不同氫含量比例對於TiO2 -doped ZnO薄膜之穿透光譜圖..86
圖4-27 不同氫含量比例的TiO2-doped ZnO薄膜α2對hν的關係圖.86
圖4-28 穿透性之比較…………………………………………………87
圖5-1 不同MgO含量摻入TiO2 -doped ZnO靶材之X-ray繞射圖…94
圖5-2 不同Mg含量摻入TiO2 -doped ZnO靶材之X-ray 繞射圖….94
圖5-3 摻Mg含量對於TiO2-doped ZnO薄膜的O1s能譜(1.82wt% Mg).95
圖5-4 不同Mg含量對於TiO2 -doped ZnO薄膜的O 1s能譜………95
圖5-5 不同摻Mg含量對於TiO2-doped ZnO薄膜之遷移率與載子濃度的變化………………………………………………………………..96
圖5-6 不同摻Mg含量影響TiO2 -doped ZnO薄膜之電阻率變化….96
圖5-7 不同Mg含量對於TiO2 -doped ZnO薄膜之穿透光譜圖……97
圖5-8 不同Mg含量的TiO2 -doped ZnO薄膜其α2 對hν的關係圖..97
圖5-9 不同Mg含量對於能隙之變化………………………………...98
表目錄
表1-1透明導電膜之不同應用…………………………………………17
表1-2 ZnO基本物理性質……………………………………………...17
表1-3各種不同的薄膜沉積製程之比較………………………………18
表2-1 ZnO與TiO2成分比例之靶材配製……………………………..31
表3-1 Zn、O及Ti元素成分之變化,基板溫度分別為1500C與2500C……………………………………………………………………47
表4-1 不同摻鈦含量對於Zn、O及Ti元素成分之變化…………….71
表4-2不同氫氣含量對於Zn、O及Ti元素成分之變化…………….71
表5-1 不同摻鎂含量對於Mg、Ti、Zn及O元素成分之變化……...93
參考文獻 1. 李玉華, ”透明導電膜及其應用”, 科儀新知, 12卷第一期, (79), 94-102.
2. 許國銓, ”科技玻璃-高性能透明導電玻璃”, 材料與社會, 84期, (82), 110-119.
3. J. Ma, J. Feng, “Electrical and optical properties of ZnO: Al films prepared by an evaporation method”, Thin Solid Films, 279 (1996) 213.
4. T. Minami, H. Sato, H. Nanto, S. Takata, “Group Ⅲ Impurity Doped Zinc Oxide Thin Films Prepared by RF magnetron sputtering”, Jpn. J. Appl. Phy., 24 (1985) L781.
5. H.L. Hartnagel, A.L. Dawar, A.K. Jain, C. Jagadish, “Semiconducting Transparent Thin Films”, Institute of Physics Publishing, Bristol, 1995.
6. K. M. Lakin, J. S. Wang, “Acoustic bulk wave composite resonators”, Appl. Phys. Lett. 38 (1981) 125.
7. C. Agashe, O. Kluth, G. Schöpe, H. Siekmann, J. Hüpkes, B. Rech, “Optimization of the electrical properties of magnetron sputtered aluminum-doped zinc oxide films for opto-electronic applications”, Thin Solid Films 442 (2003) 167.
8. X. Yu, J. Ma, F. Ji, Y. Wang, X. Zhang, C. Cheng, H. Ma, “ Preparation and properties of ZnO:Ga films prepared by r.f. magnetron sputtering at low temperature“Appl. Surf. Sci. 239 (2005) 222.
9. D. Y. Ku, I. H. Kim, I. Lee, K. S. Lee, T. S. Lee, J.-h. Jeong, B. Cheong, Y.-J. Baik, W. M. Kim, “Structural and electrical properties of sputtered indium–zinc oxide thin films”, Thin Solid Films 515 (2006) 1364.
10. T. S. Moss, “The Interpretation of the Properties of Indium Antimonide”, Phys. Soc. London Sect. B, 67 (1954) 775.
11. E. Burstein, “Anomalous Optical Absorption Limit in InSb”, Phys. Rev., 93 (1954) 632.
12. S.A. Studenikin, N. Golego, M. Cocivera, ”Carrier mobility and density contributions to photoconductivity transients in polycrystalline ZnO films”, J. Appl. Phys. 87 (2000) 2413.
13. J. Hu, R.G. Gordan, “Textured aluminum-doped zinc oxide thin films from atmospheric pressure chemical-vapor deposition”, J. Appl. Phys. 71 (1992) 880.
14. H. U. Habermeier, “Properties of Indium Tin Oxide Thin Films Prepared by Reactive Evaporation”, Thin Solid Films, 80 (1981) 157.
15. F. Furusaki, J. Takahashi, K. Kodaira, “Preparation of ITO Thin films by Sol-Gel Method”, J. of the Ceramic Society of Japan, 102 (1994) 200.
16. Z.-C. Jin, I. Hamberg, C.G. Granqvist, “Optical properties of sputter-deposited ZnO:Al thin films”, J. Appl. Phys. 64 (1988) 5117.
17. 莊達人,“VLSI製造技術”,高立圖書有限公司, 2002年7月20日五版修訂
18. D. S. Richerby and A. Matthews, “Advanced Surface Coatings: A Handbook of Surface Engineering”, Chapaman and Hall, New York, (1991) 92.
19. S. M. Rossnagel et al., “Handbook of Plasma Processing Technology”, Noyes Publications, Park Ridge, New Jersey, U.S.A., (1982).
20. 楊錦章,“基礎濺鍍電漿”, 電子發展月刊, 68期, (72), 13-40.
21. Brian Chapman, “Glow Discharge Processes”, John Wiley and Sons, New York, (1980).
22. N. Fujimura, T. Nishihara, S. Goto, J. Xu, T. Ito, “Control of preferred orientation for ZnOx films: control of self-texture”, J. Cryst. Growth 130 (1993) 269.
23. T. Minanmi, “Transparent conducting oxide semiconductors for transparent electrodes”, Semicond. Sci. Technol. 20 (2005) S35.
24. Y. M. Lu, C. M. Chang, S. I. Tsai, T. S. Wey, “Improving the conductance of ZnO thin films by doping with Ti”, Thin Solid Films 447-448 (2004) 56.
25. S. S. Lin, J. L. Huang, D. F. Lii, “ Effect of substrate temperature on the properties of Ti-doped ZnO films by simultaneous rf and dc magnetron sputtering“, Mater. Chem. Phys. 90 (2005) 22.
26. A. Van der Drift, “Evolutionary selection, A Principle Governing Growth Orientation In Vapour-Deposited Layers“, Philips Res. Rep. 22 (1967) 267.
27. K. H. Yoon, J. W. Choi and D. H. Lee, “Characteristics of ZnO thin films deposited onto Al/Si substrates by r.f. magnetron sputtering”, Thin Solid Films 302 (1997) 116.
28. S. Takada, “Relation between optical property and crystallinity of ZnO thin films prepared by rf magnetron sputtering”, J. Appl. Phys. 73 (1993) 4739.
29. B. Y. Oh, M. C. Jeong, W. Lee, J. M. Myoung, “Properties of transparent conductive ZnO:Al films prepared by co-sputtering”, J. Cryst. Growth 274 (2005) 453.
30. X. Yu, J. Ma, F. Ji, Y. Wang, C. Cheng, H. Ma, “Thickness dependence of properties of ZnO:Ga films deposited by rf magnetron sputtering”, Applied Surface Science 245 (2005) 310.
31. Y. Ohya, H. Saiki, T. Tanaka, Y. Takahashi,” Microstructure of TiO2 and ZnO films fabricated by the sol-gel method”, J. Am. Ceram. Soc. 79 (1996) 825.
32. J. W. Christian, “The Theory of Transformation in Metals and Alloys”, 2nd ed., Part 1, Pergamon Press, Oxford, U. K., (1975).
33. S. H. Jeong, J. W. Lee, S. B. Lee, J. H. Boo, “Deposition of aluminum-doped zinc oxide films by RF magnetron sputtering and study of their structural, electrical and optical properties”, Thin Solid Films 435 (2003) 78.
34. S. H. Jeong, J. H. Boo, “Influence of target-to-substrate distance on the properties of AZO films grown by RF magnetron sputtering”, Thin Solid Films 447 (2004) 105.
35. V. Assunção, E. Fortunato, A. Marques, H. Águas, I. Ferreira, M. E. V. Costa, R. Martins, “Influence of the deposition pressure on the properties of transparent and conductive ZnO:Ga thin-film produced by r.f. sputtering at room temperature”, Thin Solid Films 427 (2003) 401.
36. W. Tang, D. C. Cameron, “Aluminum-doped zinc oxide transparent conductors deposited by the sol-gel process”, Thin Solid Films 238 (1994) 83.
37. W.W. Wang, X.G. Diao, Z. Wang, M. Yang, T.M. Wang, Z. Wu, “Preparation and characterization of high-performance direct current magnetron sputtered ZnO:Al films”, Thin Solid Films 491 (2005) 54.
38. J. Yoo, J. Lee, S. Kim, K. Yoon, I. J. Park, S.K. Dhungel, B. Karunagaran, D. Mangalaraj, J.Yi, “High transmittance and low resistive ZnO:Al films for thin film solar cells”, Thin Solid Films 480-481 (2005) 213.
39. T. Minami, H. Nanto, S. Takata, ”Highly Conductive and Transparent Aluminum Doped Zinc Oxide Thin Films Prepared by RF Magnetron Sputtering”, Jpn. J. Appl. Phys. 23 (1984) L280.
40. Su-Shia Lin, Jow-Lay Huang, Ding-Fwu Lii, “The effect of thickness on the properties of Ti-doped ZnO films by simultaneous r.f. and d.c. magnetron sputtering”, Surface and Coatings Technology 190 (2005) 372.
41. Su-Shia Lin, Jow-Lay Huang, P. ajgalik, “The properties of Ti-doped ZnO films deposited by simultaneous RF and DC magnetron sputtering”, Surface and Coatings Technology 191 (2005) 286.
42. Y. -J. Kim, H. -J. Kim, “Trapped oxygen in the grain boundaries of ZnO polycrystalline thin films prepared by plasma-enhanced chemical vapor deposition”, Materials Letters 41 (1999) 159.
43. B. H. Choi, H. B. Im, J. S. Song, K. H. Yoon, “Optical and electrical properties of Ga2O3-doped ZnO films prepared by r.f. sputtering”, Thin Solid Films 193-194 (1990) 712.
44. Y. Igasaki, H. Saito, “Substrate temperature dependence of electrical properties of ZnO:Al epitaxial films on sapphire (1 10)”, J. Appl. Phys. 69 (1991) 2190.
45. K. C. Park, D. Y. Ma, K. H. Kim, “The physical properties of Al-doped zinc oxide films prepared by RF magnetron sputtering”, Thin Solid Films 305 (1997) 201.
46. K. H. Kim, K. C. Park, D.Y. Ma, ” Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering”, J. Appl. Phys. 81 (1997) 7764.
47. J.-L. Chung, J.-C. Chen, C.-J. Tseng, “ Electrical and optical properties of TiO2-doped ZnO films prepared by radio frequency magnetron sputtering“, J. Phys. Chem. Solids. 69 (2008) 535.
48. J.- L. Chung, J.-C. Chen, C.-J. Tseng, “ The influence of titanium on the properties of zinc oxide films deposited by radio frequency magnetron sputtering“, Appl. Surf. Sci. 254 (2008) 2615.
49. C. G. Van de Walle, “Hydrogen as a Cause of Doping in Zinc Oxide”, Phys. Rev. Lett. 85 (2000) 1012.
50. C. G.. Van de Walle, J. Neugebauer, “Hydrogen as a Cause of Doping in Zinc Oxide”, Nature 423 (2003) 626.
51. L. Y. Chen, W. H. Chen, J. J. Wang, Franklin C. N. Hong, “ Hydrogen as a Cause of Doping in Zinc Oxide“, Appl. Phys. Lett. 85 (2004) 5628.
52. Y. Sun, W. Liu, Z. He, S. Liu, Z. Z. Yi, G. Du, “Novel properties of AZO film sputtered in Ar+H2 ambient at high temperature”, Vacuum 80 (2006) 981.
53. M. Katiyar, Y. H. Yang, J. R. Abelson, “Hydrogen-surface reactions during the growth of hydrogenated amorphous silicon by reactive magnetron sputtering: A real time kinetic study by in situ infrared absorption”, J. Appl. Phys. 77 (1995) 6247.
54. W.F. Liu, G. T. Du, Y. F. Sun, J. M. Bian, Y. Cheng, T. P. Yang, Y. C. Chang, Y. B. Xu, “Effects of hydrogen flux on the properties of Al-doped ZnO films sputtered in Ar+H2 ambient at low temperature”, Applied Surface Science 253 (2007) 2999.
55. S. Choopun, R. D. Vispute, W. Yang, R. P. Sharma, T. Venkatesan, H. Shen, “Realization of band gap above 5.0 eV in metastable cubic-phase MgxZn1-xO alloy films ”, Appl. Phys. Lett. 80 (2002) 1529.
56. J. Narayan, A. K. Sharma, A. Kvit, C. Jin, J. F. Muth, O. W. Holland, “Novel cubic ZnxMg1-xO epitaxial heterostructures on Si (100) substrate”, Solid State Communication 121 (2002) 9.
57. T. Minemoto, T. Negami, S. Nishiwaki, H. Takakura, Y. Hamakawa, “Preparation of Zn1-xMgxO films by radio frequency magnetron sputtering”, Thin Solid Films 372 (2000) 173.
58. M. N. Islam, T. B. Ghosh, K. L. Chopra, H. N. Acharya, “XPS and X-ray diffraction studies of aluminum-doped zinc oxide transparent conducting films”, Thin Solid Films 280 (1996) 20.
59. J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, “Handbook of X-ray Photoelectron spectroscopy”, Physical Electronics, Inc., Eden Prairie, 1995, p. 231.
60. J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, “Handbook of X-ray Photoelectron spectroscopy”, Physical Electronics, Inc., Eden Prairie, 1995, p. 232.
61. J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, “Handbook of X-ray Photoelectron spectroscopy, Physical Electronics”, Inc., Eden Prairie, 1995, p. 231.
62. S. Kumar, V. Gupte, K. Sreenivas, “Structural and Optical Properties of magnetron sputtered MgxZn1-xO thin films”, J. Phys.: Condens. Matter. 18 (2006) 3343.
指導教授 曾重仁(Chung-Jen Tseng) 審核日期 2008-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明