博碩士論文 91323002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:18.117.188.213
姓名 邱垂賢(Chui-Hsien Chiu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 AISI 347不銹鋼之低週腐蝕疲勞性質探討
(Low-Cycle Corrosion Fatigue of AISI 347 Stainless Steel)
相關論文
★ 晶圓針測參數實驗與模擬分析★ 車銑複合加工機床面結構最佳化設計
★ 精密空調冷凝器軸流風扇葉片結構分析★ 第四代雙倍資料率同步動態隨機存取記憶體連接器應力與最佳化分析
★ PCB電性測試針盤最佳鑽孔加工條件分析★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究
★ 合金元素(錳與鋁)與球磨處理對Mg2Ni型儲氫合金放電容量與循環壽命之影響★ 鍶改良劑、旋壓成型及熱處理對A356鋁合金磨耗腐蝕性質之影響
★ 核電廠元件疲勞壽命模擬分析★ 可撓式OLED封裝薄膜和ITO薄膜彎曲行為分析
★ MOCVD玻璃承載盤溫度場分析★ 不同環境下之沃斯回火球墨鑄鐵疲勞裂縫成長行為
★ 不同環境下之Custom 450不銹鋼腐蝕疲勞性質研究★ AISI 347不銹鋼腐蝕疲勞行為
★ 環境因素對沃斯回火球墨鑄鐵高週疲勞之影響★ AISI 347不銹鋼在不同應力比及頻率下之腐蝕疲勞行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文主旨在探討負荷應變比、頻率及波形效應對AISI 347不銹鋼應變控制之低週腐蝕疲勞的影響,分析在空氣、NaCl 及H2SO4水溶液中低週疲勞壽命之差異。此外,亦利用掃描式電子顯微鏡(SEM)觀察破斷面,以了解疲勞破壞機制。
實驗結果顯示,在各應變比下,高應變振幅區中腐蝕環境並不會使材料產生過早的裂縫起始,此乃為腐蝕溶解量不足的原因所致,且由SEM 的觀察可發現在腐蝕環境中,其破壞模式仍由機械破壞所引起。然而,在低應變振幅區,NaCl溶液中的疲勞壽命隨應變比的提高而降低,而在H2SO4環境中此一趨勢僅發生於高應變比(R = 0.5及0.8),此乃因為張平均應力會產生不可回復之滑移階而形成一幾何不連續的位置,而在此一幾何不連續的位置易形成濃度集中的現象進而促進材料的腐蝕。由實驗結果亦可發現,在NaCl環境中其腐蝕破壞的程度高於H2SO4 水溶液,其原因為在NaCl 水溶液中,其腐蝕破壞形態與表面蝕孔有關的缺陷,此一缺陷易形成有效之應力集中而導致裂縫的提早形成。另外,在頻率及波形效應方面,僅有H2SO4水溶液在10秒的張應變持時條件下,其環境效應有高於1 Hz三角波的現象,其原因為鈍化膜的溶解使得再鈍化的效果較低,因而造成整體腐蝕溶解量的上升。
在應變比為-1的低週疲勞試驗中,三環境在高應變區均呈現循環硬化的現象,造成此現象的原因為應變硬化的結果,然而在低應變振幅區則呈現循環軟化的現象。在R = 0.5,ea = 0.7% 及R = 0.8 之各振幅其塑性區有縮小的現象,此一現象可能與麻田散鐵的形成有關。另外,在腐蝕環境中其應力振幅均大於空氣中的應力振幅(R = -1,ea = 0.3%、0.4% 除外),其可能原因為氫幫助差排的形成與移動,因而加強硬化的效果。
此外,本研究亦提出修正型Manson and Halford 及修正型SWT 關係式,迴歸AISI 347 不銹鋼在各環境中、不同應力比的低週疲勞壽命值以得到適用的壽命評估模式。
摘要(英) The aim of this study is to investigate the influence of strain ratio, frequency, and waveform on low cycle corrosion fatigue behavior of AISI 347 stainless steel in different environments, namely, air, NaCl, and H2SO4 solutions. Fractography analyses with scanning electron microscopy (SEM) were conducted to investigate the corrosion fatigue crack initiation mechanism.
Results showed that at high strain amplitude region for each strain ratio the fatigue lives in three environments were comparable. These results implied that the environmental effects were not distinguishable as a result of insufficient amount of local dissolution. This was supported by SEM observations in which the fatigue fracture was found to be dominated by large plastic deformation from mechanical loading. However, at low strain amplitude region, the fatigue lives in NaCl solution were decreased with an increase in strain ratio, while in H2SO4 solution similar tendency only occurred at R = 0.5 and 0.8. The strain-ratio effects might be explained by the influence of a concentrated environment on the geometrical discontinuities generated by a tensile mean stress. The concentrated environment at such areas would enhance corrosion rate to dissolve fresh surface produced in the next loading cycle. It was also found that the environmental effects were more pronounced in NaCl solution than in H2SO4 one due to the formation of sharp fissures to accelerate crack initiation in NaCl solution. With regard to the effect of frequency and waveform on LCCF, the environmental effect was only enhanced at the testing condition with a 10-s hold time at peak strain in H2SO4 solution due to less repairment of passive film and more local dissolution during a loading cycle.
LCF specimens in the given three environments exhibited cyclic hardening at high strain amplitude region as a result of strain hardening, while at low strain amplitude region cyclic softening was observed. Furthermore, the plastic strain amplitudes for R = 0.5 with an applied strain amplitude of 0.7% and for all applied strain amplitudes at R = 0.8 were slightly smaller than the corresponding ones at other strain ratios due to a possible martensitic transformation. Cyclic hardening in both aqueous solutions was more pronounced than that in air due to the influence of hydrogen. The LCF life data in the given three environments obtained for AISI 347 stainless steel under various strain ratios could be well correlated by a modified SWT model as well as a modified Manson-Halford one.
關鍵字(中) ★ 平均應變
★ 低週腐蝕疲勞
關鍵字(英) ★ Low-Cycle Corrosion Fatigue
★ SWT
★ Manson-Halford
★ AISI 347
★ Mean strain
論文目次 TABLE OF CONTENTS
Page
LIST OF TABLES VII
LIST OF FIGURES VIII
1. INTRODUCTION 1
1.1 Background 1
1.2 Low Cycle Fatigue 2
1.3 Effect of Strain Ratio on Low Cycle Fatigue 3
1.4 Low Cycle Corrosion Fatigue 6
1.5 Low Cycle Corrosion Fatigue of Austenitic Stainless Steels 10
1.6 Purpose and Scope 12
2. EXPERIMENTAL PROCEDURES 13
2.1 Material and Specimen Geometry 13
2.2 Solution Annealing Treatment 13
2.3 Low Cycle Corrosion Fatigue Test 13
2.4 Fractography Analysis 14
3. RESULTS AND DISCUSSION 16
3.1 Low Cycle Corrosion Fatigue 16
3.1.1 Effect of Environment on Low Cycle Fatigue 16
3.1.2 Effect of Strain Ratio on Low Cycle Corrosion Fatigue 19
3.1.3 Effects of Frequency and Waveform on Low Cycle Corrosion Fatigue 21
3.2 Cyclic Stress-Strain Behavior 23
3.3 Life Prediction Models 25
3.4 Fractography Analysis 28
4. CONCLUSIONS 31
REFERENCES 33
TABLES 37
FIGURES 41
參考文獻 REFERENCES
1. A. J. Sedriks, Corrosion of Stainless Steels, 2nd ed., John Wiley & Sons, Inc., New York, USA, 1996, pp. 13-21.
2. W. F. Smith, Structure and Properties of Engineering Alloys, McGraw-Hill, Inc., New York, USA, 1981, p. 303.
3. I. Ben-Haroe, A. Rosen, and I. W. Hall, “Evolution of Microstructure of AISI 347 Stainless Steel During Heat Treatment,” Materials Science and Technology, Vol. 9, 1993, pp. 620-626.
4. O. Wachter and G. Brummer, “Experiences with Austenitic Steels in Boiling Water Reactors,” Nuclear Engineering and Design, Vol. 168, 1997, pp. 35-52.
5. R. I. Stephens, A. Fatemi, R. R. Stephens, and H. O. Fuchs, Metal Fatigue in Engineering, 2nd ed., Wiley Interscience Publication, New York, 2001, pp. 93-117.
6. J. A. Bannantine, J. J. Comer, and J. L. Handrock, Fundamentals of Metal Fatigue Analysis, Prentice-Hall Press, New Jersey, 1990, pp. 40-71.
7. T. Wehner and A. Fatemi, “Effect of Mean Stress on Fatigue Behavior of a Hardened Carbon Steel,” International Journal of Fatigue, Vol. 13, 1991, pp. 241-248.
8. L. F. Coffin, Jr., “A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal,” Transactions of ASME, Vol. 76, 1954, pp. 931-950.
9. S. S. Mason, “Behavior of Materials under Conditions of Thermal Stress,” Heat Transfer Symposium, University of Michigan Engineering Research Institute, 1953, pp. 9-75.
10. J. Morrow, “Cyclic Plastic Strain Energy and Fatigue of Metals,” Internal Friction, Damping, and Cyclic Plasticity, ASTM STP 378, American Society for Testing and Materials, Philadelphia, 1965, p. 45.
11. S. S. Manson and G. R. Halford, “Practical Implementation of the Double Linear Damage Rule and Damage Curve Approach for Treating Cumulative Fatigue Damage,” International Journal of Fracture, Vol. 17, 1981, pp. 169-172, R35-R42.
12. P. Watson, “The Effect of Mean Stress and Overstrains on the Fatigue Behavior of Structural Components,” Ph.D. Dissertation, University of Waterloo, 1971.
13. K. N. Smith, P. Watson, and T. H. Topper, “A Stress-Strain Function for the Fatigue of Materials,” Journal of Materials, Vol. 5, 1970, pp. 767-778.
14. S. K. Koh and R. I. Stephens, “Mean Stress Effects on Low Cycle Fatigue for a High Strength Steel,” Fatigue and Fracture for Engineering Materials and Structures, Vol. 14, 1991, pp. 413-428.
15. T. Goswami, “Prediction of Low Cycle Fatigue Lives of Low Alloy Steels,” ISIJ International, Vol. 36, 1996, pp. 354-360.
16. J. H. Huang, Y. Si, L. G. Zheng, and X. H. Dong, “A Dislocation Model of Low-Cycle Fatigue Damage and Derivation of Coffin-Manson Equation,” Materials Letters, Vol. 15, 1992, pp. 212-216.
17. D. Fang and A. Berkovits, “Mean Stress Models for Low-Cycle Fatigue of a Nickel-Base Superalloy,” International Journal of Fatigue, Vol. 16, 1994, pp. 429-437.
18. J. H. Bulloch, “Effect of Mean Stress on the Threshold Fatigue Crack Extension Rates of Two Spheroidal Graphite Cast Irons,” Theoretical and Applied Fracture Mechanics, Vol. 18, 1992, pp. 15-30.
19. W. Schutz, “Fatigue Life Prediction for Aircraft Structure and Materials,” NATO, AGARD-LS-62, 1973, pp. 10-1~10-32.
20. E. Lachmann and K. T. Rie, “The Low Cycle Corrosion Fatigue of AH36-GL and 13 CrMo 44 Steel in 3 Percent NaCl Solution,” Corrosion Science, Vol. 23, 1983, pp. 637-644.
21. K. Endo, K. Komai, and K. Nakagaki, “Plastic Strain Fatigue of High Tensile Steel in Corrosive Media,” Bulletin of Japanese Society of Mechanical Engineers, Vol. 11, 1968, pp. 791-797.
22. K. Endo, and K. Komai, “Effect of Stress Wave Form and Cycle Frequency on Low Cycle Corrosion Fatigue,” pp. 437-450 in Corrosion Fatigue, NACE 2, Edited by O. Devereux, A. J. McEvily, and R. W. Staehle, National Association of Corrosion Engineers, Houston, Texas, USA, 1972.
23. J. Q. Wang, J. Li, Z. F. Wang, Z. Y. Zhu, W. Ke, Q. S. Zang and Z. G. Wang, “Influence of Loading Frequency on Transient Current Behavior of Fe-26Cr-1Mo During Low Cycle Corrosion Fatigue in 1M H2SO4 and 0.6M NaCl Solution,” Scripta Metallurgica et Materialia, Vol. 29, 1993, pp. 1415-1420.
24. J. Q. Wang, J. Li, Z. F. Wang, Z. Y. Zhu, W. Ke, Q. S. Zang and Z. G. Wang, “Cracking Process of Fe-26Cr-1Mo During Low Cycle Corrosion Fatigue,” Scripta Metallurgica et Materialia, Vol. 31, 1994, pp. 1561-1565.
25. 柯賢文, 腐蝕及其防制, 全華科技出版社, 台北, 1995, pp. 127-135.
26. 左景伊, 應力腐蝕破裂, 西安交通大學出版社, 陝西西安, 1985, p. 31.
27. M. R. Bayoumi, “Fatigue Behavior of a Commercial Aluminum Alloy in Sea Water at Different Temperatures,” Engineering Fracture Mechanics, Vol. 45, 1993, pp. 297-307.
28. H. Bernstein and C. Loeby, “Low-Cycle Corrosion Fatigue of Three Engineering Alloys in Salt Water,” Transactions of the ASME, Vol. 110, 1988, pp. 234-239.
29. T. Magnin and L. Coudreuse, “The Effects of Strain Rate on the Corrosion Fatigue Behaviour of B.C.C. Fe-26Cr-1Mo Stainless Steels,” Materials Science and Engineering, Vol. 72, 1985, pp. 125-134.
30. J. Q. Wang, J. Li, Z. F. Wang, Z. Y. Zhu, W. Ke, Q. S. Zang and Z. G. Wang, “Influence of Loading Frequency on Transient Current Behavior of Fe-26Cr-1Mo During Low Cycle Corrosion Fatigue in 1M H2SO4 and 0.6M NaCl Solutions,” Scripta Metallurgica et Materialia, Vol. 29, 1993, pp. 1415-1420.
31. T. Pyle, V. Rollins, and D. Howard, “The Influence of Cyclic Plastic Strain on the Transient Dissolution Behavior of 18/8 Stainless Steel in 3.7M H2SO4,” Journal of the Electrochemical Society, Vol. 122, 1975, pp. 1445-1453.
32. 藍一龍, “AISI 347不銹鋼腐蝕疲勞行為,” 國立中央大學機械工程研究所碩士論文, 2001.
33. “Standard Practice for Strain-Controlled Fatigue Testing,” ASTM E606-92, Annual Book of ASTM Standards, Vol. 3.01, American Society for Testing and Materials, West Conshohocken, PA, USA, 1998, pp. 528-542.
34. K. Tsuzaki, E. Nakanishi, T. Maki, and I. Tamura, “Low-Cycle Fatigue Behavior in Metastable Austenitic Steel Accompanying Deformation-Induced Martensitic Transformation,” Transactions ISIJ, Vol. 23, 1983, pp. 834-841.
35. R. W. Hertzberg, “Deformation and Fracture Mechanics of Engineering Materials,” 3rd ed., John Wiley & Sons, Inc., New York, USA, 1989, pp. 111-117.
36. D. A. Jones, Principles and Prevention of Corrosion, 2nd ed., Prentice-Hall, Inc., New York, USA, 1996, p. 334.
37. P. Rozenak, I. M. Robertson, and H. K. Birnbaum, “HVEM Studies of the Effects of Hydrogen on the Deformation and Fracture of AISI Type 316 Austenitic Stainless Steel,” Acta Metallurgica et Materialia, Vol. 38, 1990, pp. 2031-2040.
38. D. Howard and T. Pyle, “ The Dissolution of Atoms from Steps on a Metal Surface,” Philippine Magazine, Vol. 14, 1966, pp. 1179-1189.
指導教授 林志光(Chih-Kuang Lin) 審核日期 2004-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明