國立中央大學八十九學年度碩士班研究生人 【FIRI:資訊工程學系 不分組 科目:線性代數 共

共1頁第1頁.

※ 請務必按照題號次序寫在答案紙上。

- 1.(15%) A Givens rotation is a linear transformation from R^n to R^n used in computer programs to create zeros in a vector. The standard matrix of a Givens rotation in \mathbb{R}^2 has the form: $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$, $a^2 + b^2 = 1$.
 - (a) Find α and b such that vector $[4, 3]^T$ is rotated into $[5, 0]^T$. (8%)
 - (b) Find a 3×3 matrix A such that $A[2, 3, 4]^T = [\sqrt{29}, 0, 0]^T$. (7%)

(Hint: Find a Givens rotation in \mathbb{R}^3 s.t. $\begin{bmatrix} a & 0 & -b \\ 0 & 1 & 0 \\ b & 0 & a \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 2\sqrt{5} \\ 3 \\ 0 \end{bmatrix}$. Then apply another Givens rotation in \mathbb{R}^3)

2.(10%) Let
$$A = \begin{bmatrix} 1 & 3 & 8 \\ 2 & 4 & 11 \\ 1 & 2 & 5 \end{bmatrix}$$
 and $B = \begin{bmatrix} -3 & 5 \\ 1 & 5 \\ 3 & 4 \end{bmatrix}$. Compute $A^{-1}B$ without computing A^{-1} .

- 3.(15%) A polynomial p(t) of degree n-1 is defined as $p(t) = c_0 + c_1t + c_2t^2 + \cdots + c_{n-1}t^{n-1}$, where $c_0, c_1, c_2, \dots, c_{n-1}$ are n real numbers. Given n arbitrary real numbers y_1, y_2, \dots, y_n and n distinct real numbers $x_1, x_2, ..., x_n$, show that there exists one and only one polynomial p(t) of degree n-1 such that $p(x_1) = y_1, p(x_2) = y_2, ..., p(x_n) = y_n$.
- 5.(10%) True or false for determinants (每小題答對給2分,答錯扣2分,不答0分)
 - (a) $\det AB = \det A \det B$
 - (b) $\det (A+B) = \det A + \det B$
 - (c) $\det A^T = \det A$
 - (d) $\det(rA) = r \det A$
 - (e) $\det A = \det B$ if B is produced by interchanging two rows of A.
- 6.(10%) True or false for eigenvalues (每小題答對給 2 分,答錯扣 2 分,不答 0 分)
 - (a) If λ is an eigenvalue of A, then λ^{-1} is an eigenvalue of A^{-1} .
 - (b) A and A^T have the same eigenvalues.
 - (c) If A^2 is a zero matrix, then 0 is the only eigenvalue of A.
 - (d) A is invertible if and only if 0 is not an eigenvalue of A.
 - (e) A is diagonalizable if and only if all eigenvalues of A are different (distinct).
- 7.(10%) Let W be a subspace of R^n and let W^{\perp} be the orthogonal complement of W. Show that W^{\perp} is a subspace of R^n .
- 8.(10%) (a) Find a spanning set for the null space of matrix
 - (b) Explain why the spanning set is automatically linearly independent. (5%)
- 9.(10%) Find a singular value decomposition of matrix $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ -1 & 1 \end{bmatrix}$.