立中央大學八十三學年度研究所碩士班入學試題卷

所列: 资讯工程研究所

日 科目: 線性代數

共/ 頁第 / 頁

1. (15%) Give a linear system
$$A x = b$$
,
$$\begin{bmatrix} a_{11} & a_{12} & ... & a_{1n} \\ a_{21} & a_{22} & ... & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & ... & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}. \text{ Let } A_{cof} = \begin{bmatrix} A_{11} & A_{21} & ... & A_{n1} \\ A_{12} & A_{22} & ... & A_{n2} \\ \vdots & \vdots & \vdots & \vdots \\ A_{1n} & A_{2n} & ... & A_{nn} \end{bmatrix},$$

where A_{ij} is the cofactor of a_{ij} .

- (a) (5%) What is the cofactor A_{ij} of a_{ij} ?
- (b) (5%) Show that $A^{-1} = (1/\det A) A_{cot}$.
- (c) (5%) Show that $x_j = \det B_j / \det A$, where B_j is the matrix obtained from A by replacing the jth column with the vector b (Cramer's rule).
- 2. (14%) Let matrix $A = \begin{bmatrix} 2 & 0 & 1 \\ -1 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$.
 - (a) (10%) Factor A into SAS^{-1} to find S and A, where S is the eigenvector matrix and A is the eigenvalue matrix of A.
 - (b) (4%) Find A⁶⁹.
- 3. (21%) True or False (Give a reason if true, and give a counterexample if false). Let A and B be two different $n \times n$ nonsingular matrices.
 - (a) (3%) $\det A^T = \det A$.
 - (b) (3%) det(A+B) = det A + det B.
 - (c) (3%) AB and BA have the same eigenvalues.
 - (d) (3%) If A has n different eigenvectors, then A has n independent eigenvectors.
 - (e) (3%) If A has repeated eigenvalues, then A may be diagonalizable and invertible.
 - (f) (3%) If A has zero eigenvalue, then A may be diagonalizable and invertible.
 - (g) (3%) Triangular factor A = LDU, where L and U have 1's on the diagonal, and D is a diagonal matrix. {eigenvalues of A} = {eigenvalues of D}.
- 4. (15%) In the vector space \mathbb{R}^3 , what is the axis of rotation, and the angle of rotation, of the transformation that takes vector $(x_1, x_2, x_3)^T$ into vector $(x_2, x_3, x_1)^T$? Find the matrix that represents this transformation.
- 5. (20%) Let S be the subspace of \mathbb{R}^4 containing all vectors $(x_1, x_2, x_3, x_4)^T$ with $x_1 + x_2 + x_3 + x_4 = 0$ and $x_1 + 2x_2 + 3x_3 + 4x_4 = 0$.
 - (a) (10%) Find two bases for the space S and the space S^{J} (the space containing all vectors orthogonal to S) respectively.
 - (b) (10%) Find the projection of $(1,2,7)^T$ onto the space S^{\perp} .
- 6. (15%) Let A and B be two $n \times n$ square matrices.
 - (a) (8%) Show that rank(AB) is less than or equal to the minimum of rank(A) and rank(B).
 - (b) (7%) Use the result of (a) to show that if AB is invertible then both A and B are invertible.