國立中央大學八十七學年度碩士班研究生入學試題卷

所別: 資訊工程研究所 不分組 科目:

計算機概論

共2頁第1頁

وملحوار

- 1. Please design a mechanism to detect overflow or underflow of the sum of two fourbit numbers (for example, $a_3a_2a_1a_0$ and $b_3b_2b_1b_0$) using 2's complement? For example, 2+3 will have a correct value, however, 6+7 will cause overflow. (10%)
- 2. Assuming that x is an integer array and that this function call is made: max= max calc_max (x[0], x[1]); which of the following would be a possible function header? (6%)
 - (a) int calc_max (int x[0], int x[1])
 - (b) int calc_max (int *x[0], int *x[1])
 - © int calc_max (int x, int y)
 - (d) int calc_max (int *x, int *y)
- 3. Given the following function: (8%)

 void check_pressure (PATIENT_RECORD *patient)

 {

 if (*patient.pressure.systolic > 160)

*matinut m

*patient.pressure.danger_lever = TRUE; else

patient -> pressure.danger_lever = FALSE;

Are the expressions *patient.pressure.systolic and patient -> pressure.danger_lever correct? If it is wrong, explain and write the correct expression.

- 4. Write a recursive function int sum_of_sq (int n) using C to compute the sum of the squares of the integers from 1 to n, i.e., 1²+2²+...+n², here n is supplied in the initial function call. (10%)
- 5. We are given a set of six positive weights 2, 3, 5, 7, 9, 13. Exactly one of these weights is to be associated with each of the six external nodes in a binary tree with 5 internal nodes. The weighted external path length of such a binary tree is defined to be $\sum_{1 \le i \le 6} q_i k_i$ where k_i is the distance from the root node to the external node with weight q_i . Please construct a binary tree with minimal weighted external path length and compute the minimal weighted external path length of the tree. (12%)
- 6. Please finish the insertion of keys in a B'-tree of order p=3 and p_{leaf} =2 of the following sequence: (14%)

8, 5, 1, 7, 3, 12, 9, 6

}

國立中央大學八十七學年度碩士班研究生入學試題卷

所別: 資訊工程研究所 不分組 科目: 計算機概論 共 2 頁 第 2 頁

- 7. Design a 1, 3, 5, 7, 6 binary counter by using a minimum number of D flip-flops. Please write the Sum Of Product function for each D flip-flop. (10%)
- 8. Design a 2 digit SEQUENTIAL decimal adder by using TWO 4bit binary adder (one for addition, one for carry). Explain your idea. (10%)
- 9. (a) Find the minimum sum-of-products solution for the following function. (5%) $F(a,b,c,d) = \sum_{i} m(1,3,4,5,6,7,10,12,13) + \sum_{i} d(2,9,5)$
 - (b) Implement the above function by using a minimum number of NAND gates. (5%)
- 10. Write C++ programs according to the following declaration.

 Class Array {
 friend ostream & operator <<(ostream &, Array &)
 public:

 Const Array & operator=(const Array &);

 private:
 int *ptr;

Write the programs (function) for << and = operator. (10%)

int size;