國立中央大學95學年度碩士班考試入學試題卷 # 2 頁 第 / 頁

所別: 電機工程學系碩士班 甲組(一般生) 科目: 電子學

(學位在職生)

1. 計算題 (20分)

- 1-1 (5 分) The circuit of Fig. 1(a) is a source follower configuration with positive feedback. The transconductances of Q_1 and Q_2 are g_{m1} and g_{m2} , respectively. The capacitances C_{gs} and C_{gd} can be neglected. Also neglect output resistance r_0 and body effect. Calculate the input resistance R_m .
- 1-2 (5 分) The circuit of Fig. 1(b) is a common-source with a resistive feedback which can be used as a lossy active inductor. Calculate the s-domain output resistance $Z_{out}(s)$ in terms of R_F , g_m , C_{gs} , and C_{gd} .
- 1-3 (10 \Re) The circuit of Fig. 1(c) is a gyrator which can be used as an active inductor. Assume that ideal op amps are applied in the circuit. Calculate the s-domain input impedance $Z_{in}(s)$.

2. 計算題 (15分)

A feedback circuit is shown in Fig. 2, which consists of a common-gate amplifier formed by Q_I and R_D . The capacitive divider C_I , C_2 senses the output voltage, applying the result to the gate of common-source transistor Q_f . The bias circuit for Q_f is not shown. The design parameters are illustrated as follows, $g_{ml} = 5 \text{ mA/V}$, $g_{mf} = 1 \text{ mA/V}$, $R_D = 10 \text{ k}\Omega$, $C_I = 0.9 \text{ pF}$, and $C_2 = 0.1 \text{ pF}$. Assume that C_I and C_2 are sufficiently small that their loading effect on the basic amplifier can be neglected. Also neglect output resistance r_O and body effect.

- 2-1 (10 分) Derive the expressions of the transimpedance gain V_O/I_S .
- 2-2 (5 分) Find the output resistance R_{out} .

主, 背面有試題

Fig. 2 Circuit for Problem 2

Fig. 3 Circuit for Problem 3

國立中央大學95學年度碩士班考試入學試題卷 共 2 頁 第 2 頁

所別:電機工程學系碩士班 甲組(一般生)科目:電子學

(學位在職生)

3. 計算題 (15分)

A CMOS active-loaded differential amplifier is shown in Fig. 3. For this process, assume that for all transistors W/L=5.0 μ m/0.25 μ m. The design parameters are listed as follows: $\mu_n C_{ox} = 250 \ \mu$ A/V², $\mu_p C_{ox} = 100 \ \mu$ A/V², $V'_{An}=5 \ V/\mu$ m, and $|V'_{Ap}|=6 \ V/\mu$ m. The bias current I=0.2 mA, and bias current source has an output resistance $R_{SS}=25 \ k\Omega$ and an output capacitance $C_{SS}=0.2 \ p$ F. And the total capacitance at the input of the current mirror is $C_m=50 \ f$ F. The total capacitance at the output is $C_L=40 \ f$ F.

- 3-1 (6 \Re) Calculate the low frequency values of differential gain A_d , and common mode gain A_{cm} .
- 3-2 (6 \Re) Derive the expressions of the high frequency differential gain $A_d(s) = V_O / V_{id}$ in terms of g_{ml} , g_{m3} , C_L , C_m , $R_O(R_O)$ is the resistance of r_{02} and r_{04} in parallel).
- 3-3 (3 分) The value of dominant pole f_{pl} .

4. 電路設計題: Static CMOS (15 分)

Design the static complementary MOS pullup and pulldown networks for these logic expressions:

- 4-1 (5分)F1=(AB+CD)'
- 4-2 (5分) F2 = [(A+B)C+D]
- 4-3 (5 分) For a CMOS process, assume that the mobility for MOS transistors $\mu_n = 3$ μ_p , $|V_{tp}| = V_{tn}$, and the minimum channel lengths for all MOS transistors are chosen. Size the width of MOS transistors in problem 4-1 such that the circuit's rise and fall times are approximately equal.

5. 電路設計題:Pseudo-nMOS and dynamic CMOS gates (10 分)

Design the circuits for pseudo-nMOS gate and dynamic CMOS gate for the function F = [(A+B+C)D+EF]

6. 電路設計題: Dynamic shift register (10分)

Memory is an important part of digital systems. It is for temporary storage of the output produced by a combinational circuit for use at a later time in the operation. The simplest memory machine we can build with the dynamic latch is a shift register. Design a one-bit input and a one-bit output positive edge-triggered dynamic Master-slave D-type shift register. The circuits you need are two inverters and two CMOS transmission gates.

7. 簡答與說明題(15分)

- 7-1 (5 分) Derive the expressions of the dynamic switching power of CMOS logic circuit. Can we reduce the power by decrease the operation frequency?
- 7-2 (5 分) Find the output function of Fig.7-2.
- 7-3 (5 分) Find the output function C₃ of Fig.7-3.

Fig. 7-2 Circuit for Problem 7-2

.