所別:遙測科技碩士學位學程碩士班 科目:電磁學 共 3 頁 第 ] 頁

\*請在試卷答案卷(卡)內作答

電磁學 試題 共6題, 總分 100分

共3頁

1. Four point charges +Q, +2Q, -Q, and -2Q are placed at the coordinates (-2, +2), (+2, +2), (+2, -2) and (-2,-2) respectively. Calculate the magnatude of the E-field at the origin. (10%)



2. A line charge extends from x=0 to x=L and has density  $q(x)=q_0x$  Cm<sup>-1</sup>. Find the E-field at the point B (>L) on the axis. (10%)



- 3. A rectangular loop of wire of length l and of width w lies in the plane and is centered between two very long, parallel wires seperaterd at distance d. A time-dependent current  $i = I_0 \sin \omega t$  passes through the wires, as indicated in the figure. The loop is at a distance s from the wire. (20%)
  - (a) Calculate the total magnetic flux through the loop. (10%)
  - (b) Find the induced electric field in the rectangular loop. (10%)

參考用

注:背面有試題

所別:遙測科技碩士學位學程碩士班 科目:電磁學 共 3 頁 第 2 頁

\*請在試卷答案卷(卡)內作答



4. A beam of protons is collimated through a narrow slit. The proton enters a region where there is a uniform magnetic field  $\vec{B}$  coming out of the paper. The velocity  $\vec{v}$  of the protons is perpendicular to  $\vec{B}$ . The mass of proton is  $1.7 \times 10^{-27}$  kg with charge of  $1.6 \times 10^{-19}$  C. Assuming that  $|\vec{v}| = 3 \times 10^6$  m/s and  $|\vec{B}| = 2$  Tesla. Find the radius of their circular path and frequency. (20%) (Hint: use also Newton's second law)



5. A time-harmonic plane wave traveling in a source-free free space is given as follows:

 $\vec{E} = (4\hat{y} + 3\hat{z})e^{-j(3y-4z)} \quad mv/m, \quad j = \sqrt{-1},$ 

where  $e^{-jaz}$  means outgoing wave traveling along +z-axis. Assuming that y

注:背面有試題

## 國立中央大學97學年度碩士班考試入學試題卷

## 所別:遙測科技碩士學位學程碩士班 科目:電磁學 共 3 頁 第 3 頁

\*請在試卷答案卷(卡)內作答

and z represent their respective distances in meters. (25%) Determine:

- (a) the angle of the propagation direction relative to the +z-axis, (5%)
- (b) the wavelengths of the wave along y and z directions,(3%)
- (c) the phase velocities along y and z directions,(3%)
- (d) the energy velocities along y and z directions, (3%)
- (e) the frequency of the wave, (3%)
- (f) the polarization of the wave, (3%)
- (g) the associated magnetic field intensity (5%)
- 6. A bar of length L and of mass m slides along two fixed metal conductors connected by a resistor of resistance R, where there is a uniform magnetic field  $\vec{B}$  coming out of the paper as shown in the figure. If at time t=0 an impulse causes the bar to move with an initial velocity v0. Find the velocity v0 of the moving bar. (neglect any resistance in the bar and conductors and assume a frictionless contact between the bar and conductors). (15%)



