博碩士論文 91323065 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:18.119.132.223
姓名 林榮城(Jung-Cheng Lin)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 銅質均熱片研製
(Fabrication and Performance Analysis of Micro Heat Spreader)
相關論文
★ 以數值模擬探討微管流之物理效應★ 微管流之層流與紊流模擬
★ 熱差式氣體流量計之感測模式及氣流道效應分析★ 低溫倉儲噴流系統之實驗量測與數值模擬研究
★ 壓縮微管流的熱流分析★ 微小圓管的層流及熱傳數值模擬
★ 微型平板流和圓管流的熱流特性:以數值探討壓縮和稀薄效應★ 微管道電滲流物理特性之數值模擬
★ 電滲泵內多孔介質微流場特性之數值模擬★ 被動式微混合器之數值模擬
★ 電滲泵的製作與性能測試★ 叉合型流場於質子交換膜燃料電池之陰極半電池的參數探討
★ 無動件式高流率電滲泵的製作與特性分析★ 微電滲泵之暫態熱流研究
★ 高解析熱氣泡式噴墨頭墨滴成形觀測★ 電滲泵之焦耳熱效應分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本文利用化學蝕刻、CNC及燒結製程,成功地在金屬銅材上製作出不同毛細結構之微熱管均熱片,面積為50 50mm2厚約2mm,均熱片的作動熱傳率約為20-80W。同時以散熱片及銅製水塊冷卻器作冷卻,分析熱點表面溫度和冷卻器熱阻,並量測不同甲醇充填率(10-40%)及冷卻方式,探討蝕刻、溝槽式和燒結式三種毛細構造的微熱管均熱片的效能及熱傳極限。
蝕刻均熱片共有兩種不同溝槽寬度(200 m, 300 m)並搭配不同溝槽數探討毛細力與充填率對效能的影響,但是變更填充率對均熱片性能無顯著差異;當溝槽數為70時有最佳熱阻0.75oC/W,然而減少溝槽數目會使效能明顯降低,此種情況也在CNC均熱片上發生。CNC均熱片共的溝槽寬度與蝕刻均熱片相同,但為驗證溝槽深度是否會對效能及熱傳機制造成影響,故製作由深漸淺的流道(0.7-0.2mm)。在充填率方面當越增越大時,作動功率越大。燒結式均熱片在充填率方面作動趨勢與CNC均熱片相似,燒結式均熱片的最佳熱阻值為0.23oC/W較CNC溝槽式(最佳熱阻為0.36oC/W)均熱片低約30%。
摘要(英) This study developed the micro heat spreaders to spread the hot spot with a two-layer structure. The 5×5 cm2 heat spreaders with thickness 2 mm was fabricated with three methods, i.e., Etching, CNC and sintering on copper. The working fluid is methanol. This study also discuss the ratio of filling, capacity force The CNC and etching type of spreaders have a radial layout of capillary wick with 200 m in depth and 2-3 mm in width. The sintered spreader has its capillary wick made of particle size 200-400 m and 0.7mm in thickness. We placed 22 T-type thermocouples on both sides of the heat spreaders and the center of heater to measure the variations of surface temperature. Experiments were undertaken to evaluate the performance of different capillary wick structure and various filling rate. The testing range of thermal power range is 20-80 W. We compared the performance of three types of micro heat spreaders with the pure copper (conductivity k=400 W/mK). The sintered heat spreader showed the best performance, which has an thermal resistance about 0.23℃/W, compared to other types of spreader, and plate made with pure copper plate.
關鍵字(中) ★ 熱量測
★ 微製造
★ 均熱片
★ 微熱管
關鍵字(英) ★ Thermal measurement
★ Heat spreader
★ Micro heat pipe
★ Microfabrication
論文目次 英文摘要 ii
目錄 iii
表目錄 vi
圖目錄 vii
符號說明 xi
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.2.1微熱管 2
1.2.2熱管製造技術 5
1.3研究目的 7
第二章 微熱管及均熱片理論介紹 9
2.1 沸騰原理 9
2.1.1 池沸騰原理 9
2.1.2 接觸角 10
2.2 熱管理論 10
2.2.1 作動流體的選擇 11
2.2.2 毛細構造的設計 11
2.2.3 毛細構造的種類 12
2.2.4 毛細構造之毛細壓力 12
2.2.4 毛細構造之滲透力 13
2.3均熱片作動原理 13
2.4熱管熱傳限制 14
2.5工作流體的選擇與管壁材料之間的影響 17
2.5.1 操作溫度與飽和壓力差 17
2.5.2 優點因數(figure of merit) 18
第三章 微熱管均熱片製作與實驗方法 19
3.1均熱片設計概念 19
3.2化學蝕刻 20
3.2.1 光微影製程 20
3.2.2 鹽化鐵蝕刻 22
3.3 CNC製程 22
3.4 燒結製程 23
3.4.1 燒結機制 23
3.4.2 燒結參數 24
3.5 充填、脫氣與封裝 24
3.6 效能測試 25
3.7 實驗設備 26
3.8 性能評估方法 27
3.9 實驗步驟 29
3.9.1 均熱片實驗步驟 29
3.9.2 散熱片實驗步驟 31
3.10 實驗參數 32
第四章 實驗結果 33
4.1 蝕刻式均熱片 33
4.2 CNC式均熱片 35
4.3 燒結式均熱片 36
4.4 綜合比較 37
第五章 結論 40
參考文獻 43
參考文獻 Arnab K. Mallik, Peterson G. P., Mark H. Weichold, “Fabrication of Vapor-Deposited Micro Heat Pipe Arrays as an Integral Part of Semiconductor Devices,” Microelectromechanical Systems, vol. 4, no. 3, pp. 119-131, (1995).
Babin B. R., Peterson G. P., Wu D., “Analysis and Testing of a Micro Heat Pipe During Steady-State Operation,” J. of Heat Transfer, vol. 110, pp. 655-665, (1989).
Benson D. A., Mitchell R. T., Tuck M. R., Palmer D. W., Peterson G. P., “Ultrahigh-Capacity Micromachined Heat Spreaders,” Microscale Thermophyscial Eng., vol. 2, pp. 21-30, (1998).
Benson D. A., Robino C. V., “Design and Testing of Metal and Silicon Heat Spreaders with Embedded Micromachined Heat Pipes,” Advances in Electronic Packaging, vol. 26-2, pp. 1957-1964, (1999).
Cao Y., Gao M., “Wickless Network Heat Pipes for High Heat Flux Spreading Applications,” Inter. J. of Heat and Mass Transfer, vol. 45, pp. 2539-2547, (2002).
Cotter T. P., “Principles and Prospects for Micro Heat Pipe,” Proc. 5th Int. Heat Pipe Conf., Tsukuba, Japan, pp. 328-335, (1984).
Duncan A. B., Peterson G. P., “Charge Optimization for a Triangular- Shaped Etched Micro Heat Pipe,” J. of Thermophysics and Heat Transfer, vol. 5, no. 2, pp. 365-368, (1995).
Faghri A., Heat Pipe Science and Technology, Taylor & Francis, Washington, D. C., (1995).
Faghri A., “Flat Miniature Heat Pipes with Micro Capillary Grooves,” J. of Heat Transfer, vol. 121, pp. 102-109, (1999).
Gerner F. M., Hsieh W. M., Ramadas P., Chang W. S.,“Flow and Heat Transfer Limitations in Micro Heat Pipes,” Topics in Heat Transfer, vol. 3, pp. 99-104, (1992).
Gerner F. M., Badran B., Albayyari J. M., Ramadas P., Henderson H. T., Baker K. W., “Liquid-Metal Micro Heat Pipe,” ASME, Heat Transfer Division, vol. 236, pp. 71-85, (1993).
Gerner F. M., Longtin J. P., Badran B., “A One Dimensional Model of a Micro Heat Pipe During Steady-State Operation,” J. of Heat Transfer, vol. 116, pp. 709-715, (1994).
Gerner F. M., Badran B., Ramadas P., Henderson T., Baker K. W., “Experimental Results for Low-Temperatures Silicon Micromachined Micro Heat Pipe Arrays Using Water and Methanol as Working Fluid,” Experimental Heat Transfer, vol.1, pp. 253-272, (1997).
Gillot C., Avenas Y., Cezac N., Poupon G., Schaeffer C., Fournier E., “Silicon Heat Pipes Used as Thermal Spreaders“, Inter. Society Conference on Thermal Phenomena, pp. 1052-1057, (2002)
Gillot C., Avenas Y., Cezac N., Poupon G., Schaeffer C., Fournier E., “Silicon Heat Pipes Used as Thermal Spreaders“, IEEE Transactions on Components and Packaging Technologies, vol.26, no. 2, pp. 332-339, (2003).
Hopkins R., Faghri A., Khrustalev D., “Flat Miniature Heat Pipes with Micro Capillary Grooves,” J. of Heat Transfer, vol. 121, pp. 102-109, (1999).
Collier J. G., Thome J. R., Convective Boiling and Condensation, Clarendon Press, Oxford (1996).
Khrustalev D., A. Faghri, “Thermal Characteristics of Conventional and Flat Miniature Axially Grooved Heat Pipes,” J. of Heat Transfer, vol. 117, pp. 1048-1054, (1995).
Kays W. M., Convective Heat and Mass Transfer, McGraw-Hill, New York (1966).
Kang S. W., Tsai S. H., Chen H. C., “Fabrication and Test of Radial Grooved Micro Heat Pipe,” Appl. Thermal Eng., vol. 22, pp. 1559-1568, (2002)
Kang S. W., Tsai S. H., Ko M. H., “Metallic Micro Heat Pipe Heat Spreader Fabrication,” Appl. Thermal Eng., vol. 24, pp. 299-309, (2004).
Kalahasti S., Joshi Y. K., “Performance Characterization of a Novel Flat Plat Micro Heat Pipe Spreader,” IEEE Transactions On Component and Packaging Technology, vol. 25, no. 4, pp.554-560, (2002).
Lai A., Gillot C., Ivanova M., Avenas Y., Louis C., Schaeffer C., Fournier E., “Silicon Heat Pipes Used as Thermal Spreaders,” 20th IEEE Semi-Therm Symposium, pp. 21-25, (2004).
Mallik A. K., Peterson G. P., Weichold M. H., “On the Use of Micro Heat Pipes as an Integral Part of Semiconductor Devices,” J. of Electronic Packaging, vol. 114, pp. 436-442, (1992).
Maranzana G., Perry I., Maillet D., Rael S., “Design Optimization of a Spreader Heat Sink for Power Electronics,” Inter. J. of Thermal Sciences, vol. 43, pp. 21-29, (2004).
Ma H. B., Peterson G. P., “The Minimum Meniscus Radius and Capillary Heat Transport Limit in Micro Heat Pipe,” J. of Heat Transfer, vol. 120, pp. 227-233, (1998).
Murthy S. S., Joshi Y. K, Nakayama W., “Single Chamber Compact Two-Phase Heat Spreaders With Microfabricated Boiling Enhancement Structures,” IEEE Transactions on Components and Packaging Technologies, vol. 25, pp. 156-163, (2002).
Novel Concepts, Inc. http://www.novelconceptsinc.com/
Peterson G. P., Duncan A. B., Weichold M. H., “Experimental Investigation of Micro Heat Pipes Fabricated in Silicon Wafers,” J. of Heat Transfer, vol. 115, pp. 751-756, (1993).
Peterson G. P., Ma H. B., “Temperature Response of Heat Transport in a Micro Heat Pipe,” J. of Heat Transfer, vol. 121, no. 2, pp. 438-445, (1999).
Sandia National Laboratory, http://www.sandia.gov/.
Take K., Furukawa Y., Ushioda S., “Fundamental Investigation of Roll Bond Heat Pipes as Heat Spreader Plate for Notebook Computers,” IEEE Transactions on Components and Packaging Technologies, vol. 23, no. 1, pp. 256-262, (2000).
Wu D., Peterson G. P., Chang W. S., “Transient Experimental Investigation of Micro Heat Pipe,” J. of Thermophysics and Heat Transfer, vol. 5, no. 2, pp. 129-134, (1991).
黃玉年,矽質微熱管之研製與測試,私立淡江大學機械工程學系碩士論文,(1999)。
黃德麟,新型微熱管,私立淡江大學機械工程學系碩士論文,(2000)。
陳弘志,輻射狀微流道熱管之研製,私立淡江大學機械工程學系碩士論文,(2000)。
柯明翰,金屬微熱管均熱片之研製,私立淡江大學機械工程學系碩士論文,(2001)。
指導教授 吳俊諆(Jiunn-Chi Wu) 審核日期 2004-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明