博碩士論文 91343011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:68 、訪客IP:18.224.31.82
姓名 蔡耀震(Yao-Chen Tsai)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 逆向工程之曲面連續性理論與曲面模型自動化重建技術發展
(Development of Surface Continuity Theory and Automatic Surface Reconstruction Technique in Reverse Engineering)
相關論文
★ 光纖通訊主動元件之光收發模組由上而下CAD模型設計流程探討★ 汽車鈑金焊接之夾治具精度分析與改善
★ 輪胎模具反型加工路徑規劃之整合研究★ 自動化活塞扣環壓入設備之開發
★ 光學鏡片模具設計製造與射出成形最佳化研究★ CAD模型基礎擠出物之實體網格自動化建構技術發展
★ 塑膠射出薄殼件之CAD模型凸起面特徵辨識與分模應用技術發展★ 塑膠射出成型之薄殼件中肋與管設計可製造化分析與設計變更技術研究
★ 以二維影像重建三維彩色模型之色彩紋理貼圖技術與三維模型重建系統發展★ 結合田口法與反應曲面法之光學鏡片射出成型製程參數最佳化分析
★ 薄殼零件薄殼本體之結構化實體網格自動建構技術發展★ Boss特徵之結構化實體網格自動化建構技術發展
★ 應用於模流分析之薄殼元件CAD模型特徵辨識與分解技術發展★ 實體網格建構對於塑膠光學元件模流分析 之影響探討
★ 螺槳葉片逆向工程CAD模型重建與檢測★ 電腦輔助紋理影像辨識與點資料視覺化研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 逆向工程為一種由實物模型重建CAD模型的技術,已廣泛應用於工業界。由於產品造型變化極大,逆向重建手法繁瑣,同樣的產品往往會因為各人經驗多寡而使得重建結果不一致,影響到重建的品質及效率。本研究針對逆向重建中最困難的部份之一-曲面連續性問題,深入探討連續性理論及發展曲面間平滑且連續接合的技術,並開發逆向工程中網格、曲線及曲面等關鍵技術,協助曲面模型重建技術的提升。進一步將產品造型依照幾何特性歸納整理,分類為簡易造型、複雜造型及連續造型,配合上述逆向技術演算法開發,提出此三種造型的建構流程及範例說明,使逆向重建手法程序化,提升模型重建品質及效率。最後,整合本研究發展的各項技術,發展出曲面模型自動化重建技術,自動重建出具有連續性特徵的完整CAD模型,實現造型產品的自動化快速逆向重建。
  本研究所發展的各項技術具體說明如下:網格特徵分離技術,以幾何特徵分離出獨立的網格區塊;從網格上擷取出順序性的點資料,發展多種曲線嵌合技術;發展曲面連續性縫合理論,使得曲面接合邊界能達到G0、G1或G2連續;將連續性理論與曲面嵌合理論結合,提出曲面連續性嵌合演算法;結合上述各項技術,發展出曲面模型自動化重建技術,快速重建出完整的CAD模型。
摘要(英) Reverse engineering, a technique to reconstruct the CAD model from the three-dimensional data of an object, has been widely used in industry. Traditional reverse engineering process mainly relies on manual operation to rebuild the CAD model. Owing to the complexity and variability of the shape of industrial products, the CAD model reconstructed generally varies in terms of the experience and skills of the operators. This study focuses on the investigation of the most difficult problem in reverse engineering-surface continuity. The issues related to the theory, technique and application of surface continuity in reverse engineering are investigated, and the key techniques of processing triangular meshes, curves and surfaces for successful surface reconstruction are developed. The products are typically classified into the following three types in accordance with their shape: simple shape, complicated shape and continuous shape. Different surface reconstruction methods for the above three types of shapes are developed to enhance the quality of the surface model and to promote the efficiency of the surface reconstruction process. Moreover, several examples are presented to illustrate the feasibility of the proposed methods. In addition, an automatic surface reconstruction process is presented to rebuild a model of B-spline surfaces from a huge number of triangular meshes, which can change traditional reverse engineering process tremendously as the entire process is almost done automatically.
  The techniques developed in this study can specifically be classified into the following five topics: data segmentation for the partition of the triangular meshes, five kinds of curve fitting algorithms to fit points into curves, surface stitching technique for G0, G1 and G2 continuity between two surfaces, surface fitting algorithm of random points with four boundary curves and continuity information from adjacent surfaces, and a novel method for automatic surface reconstruction from a huge number of triangular meshes.
關鍵字(中) ★ 網格特徵分離
★ 曲線嵌合
★ 曲面曲率縫合
★ 曲面連續性嵌合
★ 曲面模型自動化重建
關鍵字(英) ★ data segmentation for triangular meshes
★ curve fitting
★ G2 continuity surface stitching
★ continuity surface fitting
★ automatic surface reconstruction
論文目次 摘要 I
ABSTRACT II
致謝 IV
目錄 V
圖目錄 X
表目錄 XX
第一章 緒論 1
1-1 前言 1
1-1-1 逆向工程的流程與技術 2
1-1-2 逆向工程常見的問題 14
1-2 文獻回顧 16
1-3 研究目的與方法 22
1-4 論文架構 28
第二章 網格資料特徵分離 30
2-1 前言 30
2-2 特徵分離流程 32
2-3 計算網格頂點特徵值 34
2-3-1 網格頂點之法向量方向 35
2-3-2 網格頂點特徵值 40
2-4 設定閾值定義特徵區域 42
2-5 合併雜訊區域 46
2-6 網格分離 48
2-7 範例 50
2-8 結論 52
第三章 曲線嵌合與縫合技術 53
3-1 前言 53
3-2 嵌合點資料的取得 54
3-3 各種曲線嵌合方法 59
3-3-1 平滑曲線嵌合 64
3-3-2 曲線延伸嵌合 67
3-3-3 封閉曲線嵌合 71
3-3-4 曲線連續性嵌合 72
3-4 曲線縫合 76
3-5 結論 78
第四章 曲面縫合技術探討 80
4-1 前言 80
4-2 B-SPLINE曲面與剪切曲面的定義 82
4-3 曲面位置連續的邊界條件 87
4-3-1 B-spline曲面縫合至B-spline曲面 87
4-3-2 B-spline曲面縫合至剪切曲面 91
4-4 曲面斜率連續的邊界條件 93
4-4-1 B-spline曲面縫合至B-spline曲面 93
4-4-2 B-spline曲面縫合至剪切曲面 104
4-5 曲面曲率連續的邊界條件 111
4-5-1 空間曲線與曲面之曲率 111
4-5-2 B-spline曲面縫合至B-spline曲面 114
4-5-3 B-spline曲面縫合至剪切曲面 125
4-6 連續性條件分類與探討 131
4-6-1 B-spline曲面縫合至B-spline曲面 131
4-6-2 B-spline曲面縫合至剪切曲面 137
4-7 結論 150
第五章 曲面連續性嵌合 153
5-1 前言 153
5-2 基底曲面與初始參數化 157
5-3 最小平方誤差函數及平滑函數 158
5-4 連續性拘束方程式 161
5-5 含邊界連續性拘束之曲面嵌合 166
5-6 範例與分析 169
5-7 結論 175
第六章 自動化曲面模型重建技術 177
6-1 前言 177
6-2 自動化建面流程 177
6-3 架構線自動規劃 180
6-4 依曲線分離網格並建立曲面模型拓撲結構 185
6-5 計算曲面邊界斜率及曲率連續性資料 188
6-6 曲面連續性嵌合 191
6-7 結論 197
第七章 範例 200
7-1 前言 200
7-2 範例一:電話話筒 200
7-3 範例二:汽車引擎蓋鈑金 205
7-4 範例三:膝關節骨頭 210
7-5 範例四:高爾夫球頭 213
7-6 範例五:運動鞋空氣袋 217
7-7 結論 224
第八章 結論與未來展望 225
8-1 結論 225
8-2 未來展望 228
參考文獻 230
蔡耀震 簡歷 238
參考文獻 [1] H.C. Kim, S.M. Hur and S.H. Lee, “Segmentation of the measured point data in reverse engineering”, The International Journal of Advanced Manufacturing Technology, Vol. 20, pp. 571-580, 2002.
[2] J. Huang and C.H. Menq, “Automatic data segmentation for geometric feature extraction from unorganized 3-D coordinate points”, IEEE Transactions on Robotics and Automation, Vol. 17, No. 3, pp. 268-279, June2001.
[3] F. Isselhard, G. Brunnett and T. Schreiber, “Polyhedral approximation and first order segmentation of unstructured point sets”, Proceeding of International Conference on Computer Graphics, pp. 433-441, 1998.
[4] G. Taubin, “Estimating the tensor of curvature of a surface from a polyhedral approximation”, Proc. of the Fifth International Conference on Computer Vision, pp. 92-907, 1995.
[5] D.L. Page, A.F. Koschan and M.A. Abidi, ”Perception -based 3D triangle mesh segmentation using fast marching watersheds”, Proc. Intl. Conf. on Computer Vision and Pattern Recognition, Vol. 2, pp. 27-32, June 2003.
[6] G. Lavoue, F. Dupont and A. Baskurt, ”Curvature tensor based triangle mesh segmentation with boundary rectification”, Proceedings of the Computer Graphics International, pp. 10-17, June 2004.
[7] T.J. Fan, G. Medioni and R. Nevatia, “Segmented descriptions of 3-D surfaces”, IEEE Journal of Robotics and Automation, Vol. RA-3, No. 6, pp. 527-528, 1987.
[8] A. Hubeli and M. Gross, “Multiresolution feature extraction for unstructured meshes”, Proceedings of the Conference on Visualization '01, pp. 287-294, 2001.
[9] S. Gumhold, X. Wang and R. MacLeod, “Feature extraction from point clouds”, Proceedings of the 10th international meshing roundtable, pp. 293-305, 2001.
[10] P.N Chivate and A.G Jablokow, “Review of surface representations and fitting for reverse engineering”, Computer Integrated Manufacturing Systems, Vol. 8, No. 3, pp. 193-204, August 1995.
[11] W. Wang, H. Pottmann and Y. Liu, “Fitting B-spline curves to points clouds by squared distance minimization”, HKU CS Tech Report TR-2004-11, 2004.
[12] W. Heidrich, R. Bartels and G. Labahn, “Fitting uncertain data with NUBRS”, Proceedings of Chamonix, pp. 1-8, 1996.
[13] W. Ma and JP Kruth, “Parameterization of randomly measured points for least squares fitting of B-spline curves and surfaces”, Computer-Aided Design, Vol. 27, No. 9, pp. 663-675, September 1995.
[14] L. Fang and D.C Gossard, “Multidimensional curve fitting to unorganized data points by nonlinear minimization”, Computer-Aided Design, Vol. 27, No. 1, pp. 48-58, January 1995.
[15] H. Yang, W. Wang and J. Sun, “Control point adjustment for B-spline curve approximation”, Computer-Aided Design, Vol. 36, No. 7, pp. 639-652, June 2004.
[16] H. Pottmann, S. Leopoldseder and M. Hofer, “Approximation with active B-spline curves and surfaces”, Proceedings of the 10th Pacific Conference on Computer Graphics and Applications, pp. 8-25, October 2002.
[17] M. Eck and J. Hadenfeld, “Local energy fairing of B-spline curves”, Computing Supplementum, Vol. 10, pp. 129-147, 1995.
[18] W. Li, S. Xu, J. Zheng and G. Zhao, “Target curvature driven fairing algorithm for planar cubic B-spline curves”, Computer Aided Geometric Design, Vol. 21, No. 5, pp. 499-513, May 2004.
[19] H. Park, K. Kim and S-C. Lee, ”A method for approximate NURBS compatibility based on multiple curve refitting”, Computer-Aided Design, Vol. 32, No. 4, pp. 237-252, April 2000.
[20] M. Alhanaty and M. Bercovier, “Curve and surface fitting and design by optimal control methods”, Computer-Aided Design, Vol. 33, No. 2, pp. 167-182, February 2001.
[21] P. Benko, G. Kos, T. Varady, L. Andor and R. Martin, “Constrained fitting in reverse engineering”, Computer Aided Geometric Design, Vol. 19, No. 3, pp. 173-205, March 2002.
[22] T. Várady, R.R Martin and J. Cox, “Reverse engineering of geometric models—an introduction”, Computer-Aided Design, Vol. 29, No. 4, pp. 255-268, April 1997.
[23] V. Weiss, L. Andor, G. Renner, T. Varady, “Advanced surface fitting techniques”, Computer Aided Geometric Design, Vol. 19, No. 1, pp. 19-42, January 2002.
[24] L.A. Piegl and W. Tiller, “Parametrization for surface fitting in reverse engineering”, Computer-Aided Design, Vol. 33, No. 8, pp. 593-603, July 2001.
[25] R.F. Sarraga, “G1 interpolation of generally unrestricted cubic Bezier curves”, Computer Aided Geometric Design, Vol. 4, No. 1-2, pp. 23-39, July 1987.
[26] W.H. Du and F.JM Schmitt, “On the G1 continuity of piecewise Bezier surfaces: a review with new results”, Computer-Aided Design, Vol. 22, No. 9, pp. 556-573, November 1990.
[27] A.K. Jones, “Nonrectangular surface patches with curvature continuity”, Computer-Aided Design, Vol. 20, No. 6, pp. 325-335, July-August 1988.
[28] K.C. Hui, “Shape blending of curves and surfaces with geometric continuity”, Computer-Aided Design, Vol. 31, No. 13, pp. 819-828, November 1999.
[29] D. Liu and J. Hoschek, “GC1 continuity conditions between adjacent rectangular and triangular Bézier surface patches”, Computer-Aided Design, Vol. 21, No. 4, pp. 194-200, May 1989.
[30] X. Ye, Y. Liang and H. Nowacki, “Geometric continuity between adjacent Bézier patches and their constructions”, Computer Aided Geometric Design, Vol. 13, No. 6, pp. 521-548, August 1996.
[31] S. Shetty and P.R. White, “Curvature-continuous extensions for rational B-spline curves and surfaces”, Computer-Aided Design, Vol. 23, No. 7, pp. 484-491, September 1991.
[32] X. Shi, P. Yu and T. Wang, “G1 continuous conditions of biquartic B-spline surfaces”, Journal of Computational and Applied Mathematics, Vol. 144, No. 1-2, pp. 251-262,July 2002.
[33] MJ Milroy, C Bradley, GW Vickers and DJ Weir, “G1 continuity of B-spline surface patches in reverse engineering”, Computer-Aided Design, Vol. 27, No. 6, pp. 471-478, June 1995.
[34] X. Shi, T. Wang, P. Wu and F. Xiu, “Reconstruction of convergent G1 smooth B-spline surfaces”, Computer Aided Geometric Design, Vol. 21, No. 9, pp. 893-913, November 2004.
[35] X.Z. Liang, X.J. Che and Q. Li, “G2 Continuity Conditions for Two Adjacent B-spline Surfaces”, Proceedings of the Geometric Modeling and Processing, 2004.
[36] X. Che, X. Liang and Q. Li, “G1 continuity conditions of adjacent NURBS surfaces”, Computer Aided Geometric Design, Vol. 22, No. 4, pp. 285-298, May 2005.
[37] Y.P. Hu and T.C. Sun, “Moving a B-spline surface to a curve—a trimmed surface matching algorithm”, Computer-Aided Design, Vol. 29, No. 6, pp. 449-455, June 1997.
[38] He. Ying and Q. Hong, “Surface reconstruction with triangular B-splines”, Proceedings of the Geometric Modeling and Processing 2004, pp. 279-287, 2004
[39] M. Eck and H. Hoppe, “Automatic reconstruction of B-spline surfaces of arbitrary topological type”, Proceeding of the 23rd annual conference on Computer graphics and interactive techniques, pp.325-334, August 1996.
[40] W. Ma and N. Zhao, “Catmull-Clark Surface Fitting for Reverse Engineering Applications”, Proceedings of the Geometric Modeling and Processing 2000, pp. 274-283, April 2000.
[41] J. Cohen, V. Varshney, D. Manocha, G. Turk and H. Weber, “Simplification envelopes”, Proceedings of the 23rd annual conference on Computer graphics and interactive techniques, pp. 119-128, 1996.
[42] M. Garland and P. Heckbert, “Surface simplification using quadric error metrics”, Proceedings of the 24th annual conference on Computer graphics and interactive techniques, pp. 209-216, 1997.
[43] M. Garland and T. Zhou, “Quadric-based simplification in any dimension”, ACM Transactions on Graphics, Vol. 24, No. 2, pp. 209-239, April 2005.
[44] T.S. Lau, S.H. Lo and C.K. Lee, “Generation of quadrilateral mesh over analytical curved surfaces”, Finite Elements in Analysis and Design, No. 27, pp. 251-272, 1997.
[45] L. Kobbelt, “Interpolatory subdivision on open quadrilateral nets with arbitrary topology”, In Proceedings of Eurographics, Computer Graphics Forum, pp. 409-420, 1996.
[46] K.Y. Lee, I.I. Kim, D.Y. Cho and T.W. Kim, “An algorithm for automatic 2D quadrilateral mesh generation with line constraints”, Computer-Aided Design, Vol. 35, No. 12, pp. 1055-1068, October 2003.
[47] K.J. Chen, Y.C. Tsai, J.Y. Lai and W.D. Ueng, “B-spline surface fitting to random points with bounded boundary conditions”, International Journal of Computer Applications in Technology, Vol. 30, No. 4, pp. 281-294, 2007.
[48] J.Y. Lai and W.D. Ueng, “G2 Continuity for Multiple Surfaces Fitting”, The International Journal of Advanced Manufacturing Technology, Vol. 17, No. 8, pp. 575-585, April 2001.
[49] R. Hoffman and A.K. Jain, “Segmentation and classification of range images”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-9, No. 5, pp. 608-620, September 1987.
[50] L. Piegl and W. Tiller, The NURBS Book, 2nd ed, Springer-Verlag, Berlin, 1997.
[51] B.K. Choi, Surface Modeling for CAD/CAM, Elservier Science Publishers B.V., New York, 1991.
[52] 邱至意,「3D曲面模型網格化之研究」,國立中央大學,碩士論文,民國九十一年。
[53] 黃家慷,「三角網格資料之邊界辨識與區域分割研究」,國立中央大學,碩士論文,民國九十七年
[54] 許聖函、賴景義,「以三角網格為基礎之啟發式特徵線搜尋」,中國機械工程學會第二十四屆全國學術研討會論文集,D06-0006,中原大學,桃園縣中壢市,民國九十六年十一月。
[55] D.J. Struik, Lectures on Classical Differential Geometry, 2nd ed, Dover Publications, New York, 1988.
[56] X. Ye, “The Gaussian and mean curvature criteria for curvature continuity between surfaces”, Computer Aided Geometric Design, Vol. 13, No. 6, pp. 549-567, August 1996.
[57] 康耀鴻,「具直紋迴轉面嚙合件變導程螺桿之曲率研究」,國立成功大學,博士論文,民國八十三年。
[58] P.V. O'Neil, Advanced Engineering Mathematics, 5th ed, Brooks/Cole, 2003.
[59] W. Kaplan, Advanced Calculus, 3rd ed, Reading, Mass: Addison Wesley, 1952.
[60] G. Sußner, G. Greiner and S. Augustiniack, “Interactive examination of surface quality on car bodies”, Computer-Aided Design, Vol. 36, No. 5, pp. 425-436, April 2004.
[61] T. Poeschl, “Detecting surface irregularities using isophotes”, Computer Aided Geometric Design, Vol. 1, No. 2, pp. 163-168, November 1984.
[62] H. Theisel, “On geometric continuity of isophotes”, Proceedings of Chamonix 1996, pp. 1-8, 1997.
[63] 翁文德,「逆向工程之曲面模型重建技術發展」,國立中央大學,博士論文,民國八十八年。
[64] 陳國仁,「最佳化嵌合理論於逆向工程與座標量測之研究」,國立中央大學,博士論文,民國九十六年。
[65] Y.C. Huang and J.Y. Lai, “A fast error comparison method for massive STL data”, Advances in Engineering Software, Vol. 39, No. 12, pp. 962-972, December 2008.
[66] A. Hubeli, K. Meyer and M. Gross, “Mesh edge detection”, Technical Report 351, ETH Zürich, Institute of Computer Systems, December 2000.
[67] 張義宏,「光學掃描量測資料之二次曲面特徵分離」,國立中央大學,碩士論文,民國九十五年。
[68] 陳志瑋,「三角網格資料特徵分離之研究」,國立中央大學,碩士論文,民國九十六年。
指導教授 賴景義(Jiing-Yih Lai) 審核日期 2009-1-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明