以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:37 、訪客IP:3.144.252.58
姓名 許國君(Gwo-jiun Sheu) 查詢紙本館藏 畢業系所 機械工程學系 論文名稱 氮化鎵發光二極體元件之電場模擬與電流擴散分析
(Electrical Simulation and Current Spreading Analysis in the GaN-based Light-Emitting Diode Devices)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 隨著發光二極體的晶片尺寸及輸入電流越來越大,此時發光層的電流分佈將明顯影響著整個晶片的光特性、電特性、及封裝散熱的效果。爲了更進ㄧ步了解LED晶片中發光層的電流擴散狀況,我們利用三維數值模擬的方式來進行目前氮化鎵發光二極體晶粒之電場模擬與電流擴散分析,以期提供未來相關研究人員在LED晶片設計上所需要的趨勢分析及參考依據。
從簡單的二維分析可知,側向形式的LED中,在p-GaN與發光層中的電流流向是垂直的,而電流擴散層與n-GaN層中的電流流向是水平的。因此,發光層中的電流會集中在p電極或n電極端,主要決定於電流擴散層與n-GaN層的阻值匹配的效果。同時,發光層中的電流分佈也會明顯影響LED晶片之取光效率及起始電壓值。
在三維實例分析方面,藉由side-view形式LED之適當p極及n極的電極佈置,在本論文討論的例子中,我們可以得到約有13 %的改善(0.45 V的壓降)。並且可知此LED型式之p電極圖形的改變對於電流分佈及壓降的改善會比n電極圖形的改變有較大的影響。另ㄧ方面,具有電流堵塞層的vertical 型式的LED也是被分析的,在這樣的例子中,可知LED晶片中的熱效應是應該被考慮進來及更為明顯的。摘要(英) When the chip size of light emitting diodes (LEDs) and the input power become larger, current spreading in the active layer will obviously affect the optical, electrical, and thermal packaging performances of the LED chip. To further understand the current spreading behavior in the active layer, we use a three-dimensional numerical simulation to analyze the electrical characteristic and current distribution of a GaN LEDs device. The results and trends found could serve as useful references for researchers focusing on the design of an LED chip.
Employing two-dimensional analysis, in lateral configuration LEDs, the current flows vertically in the p-GaN and active layers, and horizontally in the spreading and n-GaN layers. Therefore, that the current crowding in the active layer would be generated at p- or n-electrodes is mainly dependent on the effect of resistance match between the spreading and n-GaN layers. In addition, the current distribution in the active layer can also obviously affect light extraction efficiency (LEE) and driving voltage.
Using three-dimensional analysis, for real cases of side-view LEDs, the driving voltage for the well-designed p- and n-electrode patterns considered in our study can be markedly reduced to around 0.45 V, which corresponds to about 13% decrease in magnitude. The influence of the change in p-electrode pattern on current spreading and voltage drop is more significant than that made by altering the n-electrode pattern for this type of LED. On the other hand, the vertical LEDs with a current blocking layer are also analyzed, it shows that thermal effect in the LED chip should be taken into account and is more obvious in such cases.關鍵字(中) ★ 發光二極體 關鍵字(英) ★ Light-Emitting Diode 論文目次 Contents
中文摘要 ………………………………………………………………. ii
Abstract ………………………………………………………………... iii
Contents ………………………………………………………………... iv
Figure Captions …………………………………………………………vi
Table Captions …………………………………………………………. xi
Nomenclature …………………………………………………………. xii
Chapter 1 Introduction ………………………………………………….. 1
1.1 Overview of Current Spreading Research for LED ……………… 1
1.2 Objective and Scope of the Present Research ………….………... 3
Chapter 2 Modeling …………………………………………………….. 5
2.1 LED Basics: Diode Current-Voltage Characteristic ……………... 5
2.2 COMSOL Solver ………………………………………………… 6
2.2.1 Subdomain and Boundary Condition ……….………………. 6
2.2.2 Equivalent Resistance Method Used in the Active Layer …. 10
2.3 Convergence Test ……………………………………………….. 11
Chapter 3 Ideal Cases and Two-Dimensional Analysis ……………….. 12
3.1 Global Tendency ………………………………………………... 12
3.2 Electrical-Optical Analysis of a GaN/Sapphire LED Chip …….. 14
Chapter 4 Simulations of Real Cases …………………………………. 17
4.1 Lateral Configuration LEDs ……………………………………. 17
4.1.1 Typical LEDs ………………………………………………. 17
4.1.2 Side-View LEDs …………………………………………… 18
4.2 Vertical LEDs …………………………………………………... 24
Chapter 5 Conclusions ………………………………………………… 28
References …………………………………………………………….. 30參考文獻 References
1. OIDA, An OIDA Technology Roadmap Update (2002).
2. I. Niki, Y. Narukawa, D. Morita, S. Sonobe, T. Mitani, H. Tamaki, Y. Murazaki, M. Yamada, and T. Mukai, Proc. SPIE 5187, (2004).
3. James R. Brodrick and C. Eddie Christy, Proc. SPIE 5530, (2004).
4. 陳志臣, 許國君, 中華民國專利249470, (2006).
5. G. J. Sheu, J. C. Chen, J. Y. Shiu, and C. Hu, Scripta Materialia 53, 577 (2005).
6. M. Arik and S. Weaver, Opt Eng 44, 111305-1 (2005).
7. M. Arik, J. Petroski, and S. Weaver, ASME/IEEE INTERPACK 2001 Conference, Kauai, Hawaii, (2001).
8. M. Arik, C. Becker, S. Weaver, and J. Petroski, Proc. SPIE 5187, (2004).
9. Frank Wall, Paul S. Martin, and Gerard Harbers, Proc. SPIE 5187, (2004).
10. 許國君, 陳志臣, 胡凡勳, 鄭健宏, 光學工程 第九十期, 69 (2005).
11. G. J. Sheu, F. S. Hwu, S. H. Tu, W. T. Chen, J. Y. Chang, and J. C. Chen, Proc. SPIE 5941, (2005).
12. F. S. Hwu, G. J. Sheu, and J. C. Chen, Proc. SPIE 6337, (2006).
13. Y. C. Lee, J. C. Chen, F. S. Hwu, G. J. Sheu, W. D. Chen, and J. Y. Chang, Proc. of the Eighth Chinese Optoelectronics Symposium, (2006).
14. I. Eliashevich, Y. Li, A. Osinsky, C. A. Tran, M. G. Brown, and R. F. Karlicek, Jr., Proc. SPIE 3621, 28 (1999).
15. X. Guo and E. F. Schubert, J. Appl. Phys. 90, 4191 (2001).
16. D. W. Kim, H. Y. Lee, G. Y. Yeom, and Y. J. Sung, J. Appl. Phys. 98, 053102-1 (2005).
17. J. K. Sheu, Y. S. Lu, M. L. Lee, W. C. Lai, C. H. Kuo, and C. J. Tun, Appl. Phys. Lett. 90, 263511-1 (2007).
18. H. Kim, J. M. Lee, C. Huh, S. W. Kim, D. J. Kim, S. J. Park, and H. Hwang, Appl. Phys. Lett. 77, 1903 (2000).
19. H. Kim, S. J. Park, and H. Hwang, IEEE Trans. Electron Devices 48, 1065 (2001).
20. H. Kim, S. J. Park, and H. Hwang, IEEE Trans. Electron Devices 49, 1715 (2002).
21. H. Kim, K. K. Kim, K. K. Choi, H. Kim, J. O Song, J. Cho, K. H. Baik, C. Sone, and Y. Park, and T. Y. Seong, Appl. Phys. Lett. 91, 023510-1 (2007).
22. X. Guo, Y. L. Li, and E. F. Schubert, Appl. Phys. Lett. 79, 1936 (2001).
23. T. M. Chen, S. J. Wang, K. M. Uang, S. L. Chen, W. C. Tsai, W. C. Lee, and C. C. Tsai, Appl. Phys. Lett. 90, 041115-1 (2007).
24. S. J. Chang, C. F. Shen, W. S. Chen, T. K. Ko, C. T. Kuo, K. H. Yu, S. C. Shei, and Y. Z. Chiou, Electrochem. Solid State Lett. 10, H175 (2007).
25. H. Kim, J. Cho, J. W. Lee, S. Yoon, H. Kim, C. Sone, Y. Park, and T. Y. Seong, IEEE J. Quantum Electron. 43, 625 (2007).
26. A. Chakraborty, L. Shen, H. Masui, S. P. DenBaars, and U. K. Mishra, Appl. Phys. Lett. 88, 181120-1 (2006).
27. S. J. Wang, K. M. Uang, S. L. Chen, Y. C. Yang, S. C. Chang, T. M. Chen, and C. H. Chen, Appl. Phys. Lett. 87, 011111-1 (2005).
28. J. T. Chu, C. C. Kao, H. W. Huang, W. D. Liang, C. F. Chu, T. C. Lu, H. C. Kuo, and S. C. Wang, Jpn. J. Appl. Phys. 44, 7910 (2005).
29. H. Kim, S. J. Park, and H. Hwang, Appl Phys Lett 81, 1326 (2002).
30. G. J. Sheu, F. S. Hwu, J. C. Chen, J. K. Sheu, and W. C. Lai, J. Electrochem. Soc. 155, H836 (2008).
31. C. Huh, J. M. Lee, D. J. Kim, and S. J. Park, Proc. SPIE 4445, 165 (2001).
32. C. Huh, J. M. Lee, D. J. Kim, and S. J. Park, J. Appl. Phys. 92, 2248 (2002).
33. E. F. Schubert: Light-Emitting Diodes (Cambridge University Press, Cambridge, 2006).
34. M. A. Heald and J. B. Marion: Classical Electromagnetic Radiation (Saunders College Publishing, Third edition).
35. COMSOL 3.4 Multiphysics User’s Guide.
36. T. X. Lee, K. F. Gao, W. T. Chien, and C. C. Sun, Opt. Express 15, 6670 (2007).
37. M. L. Lee, J. K. Sheu, and C. C. Hu, Appl. Phys. Lett. 91, 182106-1 (2007).
38. S. Hwang and J. Shim, IEEE Trans. Electron Devices 55, 1123 (2008).
39. M. Shatalov, G. Simin, V. Adivarahan, A. Chitnis, S. Wu, R. Pachipulusu, V. Mandavilli, K. Simin, J. P. Zhang, J. W. Yang, and M. A. Khan, Jpn. J. Appl. Phys. 41, 5083 (2002).指導教授 陳志臣(Jyh-Chen Chen) 審核日期 2008-10-17 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare