博碩士論文 92323024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:52.14.221.113
姓名 簡雲南(Yun-Nan Chien)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 具新型菲涅爾透鏡之超音波微噴墨器分析與設計
(Analysis and Design of a Micro-droplet Inkjet Ejector Using New-designed Fresnel Lenses Focusing Acoustic Energy)
相關論文
★ TFT-LCD前框卡勾設計之衝擊模擬分析與驗證研究★ TFT-LCD 導光板衝擊模擬分析及驗證研究
★ 數位機上盒掉落模擬分析及驗證研究★ 旋轉機械狀態監測-以傳動系統測試平台為例
★ 發射室空腔模態分析在噪音控制之應用暨結構聲輻射效能探討★ 時頻分析於機械動態訊號之應用
★ VKF階次追蹤之探討與應用★ 火箭發射多通道主動噪音控制暨三種線上鑑別方式
★ TFT-LCD衝擊模擬分析及驗證研究★ TFT-LCD掉落模擬分析及驗證研究
★ TFT-LCD螢幕掉落破壞分析驗證與包裝系統設計★ 主動式火箭發射噪音控制使用可變因子演算法
★ 醫學/動態訊號處理於ECG之應用★ 光碟機之動態研究與適應性尋軌誤差改善
★ 醫用近紅外光光電量測系統之設計與驗証★ 車用DVD光碟機之適應性聚焦伺服控制實現與應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 目前壓電噴墨法與熱氣泡噴墨法已成熟且普遍運用於噴墨印表機上,然而面對製作更高解析度與複雜度之圖案需求,因應次世代平面顯示器之彩色濾光片塗佈製程開發、及解決新技術現存問題(如使用噴墨法製程所產生之微衛星點問題等),甚至達到未來奈米科技與生物醫學工程所需之微奈米精密噴塗目的,除了不斷改良上述方法來發展先進的相關設備之外,尋找新的噴墨機制以符合未來需求則是刻不容緩。本研究目的在於尋求並發展新的噴墨塗佈機制-超音波噴墨法,經深入研究其理論與基礎模型,再配合所需條件設計新型超音波微墨滴噴頭結構。聲波聚焦噴墨方法可以分為折射、反射及繞射方式經建設性干涉聚焦產生噴墨現象。本研究所設計之超音波噴墨系統在於使氧化鋅薄膜之換能器產生超音波後,藉由新設計之菲涅爾透鏡折射而在墨水液面附近能量聚焦,由於高聲強與高聲能密度之超音波將因聲波非線性特性致使墨水得以突破其表面張力束縛而噴出形成墨點。本論文研究首先推導符合新改良之基礎超音波噴墨模型,再利用成熟的半導體製程技術得以規劃實現超音波噴墨頭設計,並尋求驗證此機制之可行性方法,同時預先探討該基本噴墨系統設計及製作上可能導致問題的原因。
摘要(英) The ejection mechanism of inkjet printing by piezoelectric actuation or thermal bubble expansion has been drawn attentions for decades. These inkjet-printing approaches are generally employed in the application of personal printing devices. More complicated patterns and higher resolution of pixels are, however, demanded to compose finer pictures. Additionally, mico- or nano-droplet doping technology must be developed for the requirement of MEMS or biomedical engineering. Thus efforts should be taken in to improve these two ejection techniques for higher efficient and accurate printing. In another aspect, more reliable techniques to enhance the yielding and productivity such as drop-on-demand inkjet printing are required for fabricating large-scale color filters of TFT-LCD and PLED. A novel approach of inkjet printing should be developed as an alternative to meet these requirements in addition to improving above-mentioned inkjet printing mechanism. The present study aims to investigate another inkjet approach — ejection by focusing ultrasonic waves. The modeling, design and implementation scheme of ultrasonic inkjet printheads will be described in the thesis. Acoustic inkjet printing or ultrasonic inkjet printing can be achieved by focusing the sound energy through refraction, reflection or diffraction of waves. In the study, the printhead is designed to eject droplets by gathering the energy of in-phase acoustical waves. The ZnO thin film transducer is used to generate plan ultrasonic waves. The ultrasonic plane waves are further refracted in spherical waves by new-designed Fresnel lens and then focused near the ink surface. While overcoming the surface tension, ink droplets are expelled out due to the Langevin’s radiation pressure. This ultrasonic printhead designed and fabricated in the study through developed MEMS technologies has been conducted to verify the novel concept. Moreover, possible reasons affecting printhead performance are analyzed and discussed.
關鍵字(中) 關鍵字(英) ★ inkjet print color filter
★ acoustic inkjet printing
★ binary Fresnel lens
★ ejecting with ultrasonic waves
論文目次 CONTENTS
Chapter 1 Introduction……………………………………………………………………………… 01
1.1 Background………………………………………………………………………………………… 01
1.2 Literature Review…………………………………………………………………………………05
1.3 Motivation and Objection……………………………………………………………………… 07
Chapter 2 Inkjet Printing with Ultrasonic Waves………………………………………………09
2.1 Sound and Ultrasonics……………………………………………………………………………09
2.1.1 Sound Excitation and Conveyance……………………………………………………………09
2.1.2 Physical Phenomenon of Ultrasonic Waves…………………………………………………10
2.2 Acoustic Radiation Pressure and Acoustic Ejecting Model………………………………12
2.2.1 Fundamental Parameters of Acoustics………………………………………………………12
2.2.2 Langevin Radiation Pressure…………………………………………………………………15
2.2.3 Basic Model of Acoustic Ejecting………………………………………………………… 19
2.3 Structure of the Printhead Ejecting with Ultrasonic Waves……………………………24
2.3.1 Introduction to the Acoustic Inkjet Prithead………………………………………… 24
2.3.2 Acoustic Transducer……………………………………………………………………………26
2.3.3 Buffer Rod with Focusing Lenses……………………………………………………………27
2.3.4 Liquid Level Control Element……………………………………………………………… 28
2.3.5 Driving Signal………………………………………………………………………………… 29
Chapter 3 New-Designed Focusing Lens…………………………………………………………… 31
3.1 Analysis of Acoustic Waves Focused by Refraction……………………………………… 31
3.1.1 Mechanisms of Converging Sound Energy……………………………………………………31
3.1.2 Process of Spherical Wave Convergence Through A Concave Lens…………………… 38
3.2 The Fresnel Lenses Applied in Focusing Sound Energy……………………………………39
3.2.1 Principle of Acoustic Waves Focused by Fresnel Lenses………………………………39
3.2.2 The Guidance for Designing Binary Fresnel Lenses…………………………………… 41
3.3 Structure of the New-Designed Focusing Lens………………………………………………44
Chapter 4 Design and Fabrication of the New Acoustic Inkjet Printing System…………49
4.1 Planned Procedure of the Design and Implementation for the Printing System…… 49
4.2 Modeling of Acoustic Inkjet Printing with the Designed Focusing Lens…………… 52
4.3 Specification and Layout of the Designed Printing System…………………………… 59
4.3.1 Acoustic Inkjet Printhead……………………………………………………………………59
4.3.2 Ink Delivering System…………………………………………………………………………70
4.3.3 Driving-Signal Modulation……………………………………………………………………72
4.4 Initial Investigation and Verification of the Printing System………………………73
Chapter 5 Conclusions and Recommendation……………………………………………………… 78
Reference…………………………………………………………………………………………………81
參考文獻 J. Aizawa, H. Fukumoto, and M. Takeda, 2003, “Liquid Ejector,” Patent No. 6598958B2 of US Patent.
J. Aizawa, H. Fukumoto, and M. Takeda, 2004, “Droplet Ekector and Liquid Supply Tube,” Patent No. 6692106B2 of US Patent.
D. K. Biegelsen, S. A. Elrod, R. B. Apte, and D. Smith, 2000, “Acoustic Printhead and Phototeching of Acoustic Lenses for Acoustic Ink Printing,” Patent No. 0999049A2 of European Patent.
J. Brünahl, 2003, Physics of Piezoelectric Shear Mode Inkjet Actuators, Universitetsservice US-AB, Stockholm, ISBN 9162856758.
S. C. Chan, M. Mina, S. S. Udpa, L. Udpa, and W. Lord, 1996, “Finite Element Analvsis of Multilevel Acousttc Fresnel Lenses,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 43, No. 4, pp. 670-677.
K. Cheng, T. Y. Yang, V. Wang, C. C. Lai, K. H. Wu, and J. Chen, 2001, “A Novel Application of Ink-Jet Printing Technology on Manufacturing Color Filter for Liquid Crystal Display,” NIP17 Conference Proceedings Florida, IS&T, pp. 739-743.
B. T. Chu and R. E. Apfel, 1982, “Acoustic Radiation Pressure Produced by a Beam of Sound,” Journal of the Acoustical Society of America, Vol. 72, No.6, pp. 1673-1687.
T. C. Chuang, M. Lim, B. Hadimioglu, and M. J. Thompson, 1995, “Acoustic Fabrication of Color Filters,” Publication No. 0683405A1 of Europen Patent.
P. D. Edmonds, 1981, Methods of Experimental Physics: Ultrasonics, vol. 19, Academic Press, ISBN 0124759610.
S. A. Elrod, B. Hadimioglu, B. T. Khuri-Yakub, E. G. Rawson, E. Richley, and C. F. Quate, 1989, “Nozzleless Droplet Formation with Focused Acoustic Beams,” Journal of Applied Physics, Vol. 65, No. 9, pp. 3441-3447.
S. A. Elrod, B. T. Kuri-Yakub, C. F. Quate, and T. R. VanZandt, 1988, “Microlenses for Acoustic Printing,” Patent No. 4751529 of US Patent.
Ruo Feng (馮若), 2001, Ultrasonics Handbook, Nanjing University Press, ISBN 7305033545/O‧237.
H. Fukumoto, J. Aizawa, H. Matsuo, H. Narumiya, and K. Nakagawa, 20001, “Liquid Ejector Which Uses a High-Order Ultrasonic Waves to Eject Ink Droplets and Printing Apparatus Using Same,” Patent No. 6155671 of US Patent.
H. Fukumoto, J. Aizawa, H. Nakagawa, and H. Narumiya, 20002, “Printing with Ink Mist Ejected by Ultrasonic Waves,” Journal of Imaging Science and Technology, Vol. 44, No. 5, pp. 398-405.
H. Fukumoto, J. Aizawa, and H. Narumiya, 20003, “Acoustic Liquid Ejector and Printer Apparatus Incorporating the Ejector,” Patent No. 6154235 of US Patent.
R. Gupta, A. Ingle, S. Natarajan and F. So, 2004, “Ink Jet Printed Organic Displays,” SID 04 Digest, pp. 1281-1283.
B. Hadimioglu, S. Elrod, and R. Sprague, 2001, “Acoustic Ink Printing: an Application of Ultrasonics for Photographic Quality Printing at High Speed,” 2001 IEEE Ultrasonics Symposium, pp.627-635.
B. Hadimioglu, S. A. Elrod, D. L. Steinmetz, M. Lim, J. C. Zesch, B. T. Khuri-Yakub, E. G. Rawson, and C. F. Quate, 1992, “Acoustic Ink Printing,” 1992 Ultrasonics Symposium, pp. 929-935.
B. Hadimioglu, E. G. Rawson, R. Lujan, M. Lim, J. C. Zesch, B. T. Khuri-Yakub, and C. F. Quate, 1993, “High-Efficiency Fresnel Acoustic Lenses,” 1993 Ultraoniscs Symposium, pp. 579-582.
S. Hirahara, T. Saito, H. Nagato, T. Itakura, S. Takayama, H. Nukada, S. Hattori, N. Y. Kudo, S. Saitoh, M. Sugiuchi, Y. Tokai, F. Murakami, H. Tanaka, C. Tanuma, M. Izumi, I. Amemiya, A. Nakamura, S. Shimizu, and K. Okuwada, 2000, “Ink-Jet Recording Device Having an Ultrasonic Generating Element Array,” Patent No. 6045208 of US Patent.
D. Huang and E. S. Kim, 2001, “Micromachined Acoustic-Wave Liquid Ejector,” Journal of Microelectromechanical Systems, Vol. 10, No. 3, pp. 442-449.
Y. Ito, K. Kushida, K. Sugawara, and H. Takeuchi, 1995, “A 100-MHz Ultrasonic Transducer Array Using ZnO Thin Films”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 42, No. 2, pp. 316-324.
S. Kameyama, H. Fukumoto, T. Kimura, and S. Wadaka, 1999, “Ink Mist Jet Generation Using Low Frequency Focused Ultrasonic Waves and Nozzle,” 1999 IEEE Ultrasonics Symposium, pp. 695-698.
G. S. Kino, 1987, Acoustic Waves: Devices, Imaging, and Analog Signal Processing, Prentice-Hall, ISBN 0130030473.
H. S. Koo, Y. T. Liu, L. P. Cho, S. J. Chang, F. M. Wu, and D. Y. Goang, 2005, “Inkjet Printing for Fabricating Color Filter,” IDMC 2005, pp. 627-628.
J. W. Kwon, Q. Zou and E. S. Kim, 2002, “Directional Ejection of Liquid Droplets Through Sectoring Half-Wave-Band Sources of Self-Focusing Acoustic Transducer,” IEEE International Micro Electro Mechanical Systems Conference, pp. 121-124.
H. P. Loebl, M. Klee, C. Metzmacher, W. Brand, R. Milsom, P. Lok, 2003, “Piezoelectric thin AlN films for bulk acoustic wave (BAW) resonators,” Materials Chemistry and Physics, Vol. 79, pp. 143–146.
K. T. Lovelady and L. F. Toye, 1981, “Liquid Drop Emitter,” Publication No. 4308547 of US patent.
P. M. Martin, M. S. Good, J. W. Johnston, G. J. Posakony, L. J. Bond, and S. L. Crawford, 2000, “Piezoelectric films for 100-MHz ultrasonic transducers,” Thin Solid Films, Vol. 379, pp. 253-258.
R. McKeighan, 1998, “Design Guidelines for Medical Ultrasonic Arrays,” Proceedings of SPIE International Symposium on Medical Imaging, Vol. 3341, pp. 2-18.
S. Miyashita, 2002, “Printing Panels,” Information Display, Vol. 4&5, pp. 16-19.
C. F. Quate and B. T. Khuri-Yakub, 1987, “Nozzleless Liquid Droplet Ejectors,” Pantent No. 4697195 of US Patent.
C. F. Quate, E. G. Rawson, and B. Hadimioglu, 1991, “Muti-Discrete-Phase Fresnel Acoustic Lenses and Their Application to Acoustic Ink Printing,” Patent No. 5041849 of US Patent.
E. G. Rawson, B. Hadimioglu, and B. T. Khuri-Yakub, 1994, “Acoustic Ink Printhead,” Patent No. 5339101 of US Patent.
G. J. Swanson, 1989, “Binary Optics Technology: The Theory and Design of Multi-level diffractive Optical Elements,” MIT Lincoln Laboratory technical report 854.
R. W. Wood and A. L. Loomis, 1927, “The physical and biological effects of high-frequency sound-waves of great intensity,” Philosophical Magazine, Ser. 7, Vol. 4, No. 22, pp. 417-436.
J. C. Zesch, B. Hadimioglu, B. T. Khuri-Yakub, M. Lim, R. Lujan, J. Ho, S. Akamine, D. Steinmetz, C. F. Quate and E. G. Rawson, 1991, “Deposition of Highly Oriented Low-Stress ZnO Films,” 1991 Ultrasonics Symposium, pp. 445-448.
呂至平, 周柏甫, and 胡紀平, 民國92年2月, “應用熱氣泡式噴墨法開發PLED全彩顯示器之製程技術,”工業材料雜誌, 194期, pp. 140-146.
指導教授 潘敏俊(Min-Chun Pan) 審核日期 2005-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明