博碩士論文 92323036 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:129 、訪客IP:3.21.104.109
姓名 張宗達(Tsung-Ta Chang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 磨料流動加工對微細流道精修表面研究
相關論文
★ 凹形球面微電極與異形微孔的成形技術研究★ 二氧化鈦薄膜之製備與分析
★ 固態氧化物燃料電池連接板電漿鍍膜特性研究★ 碳奈米管微電極陣列之製造與性質檢測
★ 超塑性5083鋁合金快速成形空孔狀態之分析★ 微極彈性內凹結構波桑比之有限元素法分析
★ 不銹鋼微細槽放電加工及電化學拋光精修槽壁效果之研究★ 壓力容器與引流管接合處之軸對稱有限元素分析
★ 負波桑比結構之桁架有限元素法分析★ 具負波桑比性質之細胞型材料之有限元素法分析
★ 具負波桑比傘狀結構之分析與應用★ Ti-6Al-4V之超塑性成形製程模擬與分析
★ 利用微極彈性理論分析蜂巢式結構之波桑比效應★ 結合微細放電與高頻抖動研磨之微孔加工研究
★ 負波桑比機構之設計與分析★ 微雙材料熱變形樑之應用分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 中文摘要
本實驗之研究目的主要是開發一種可隨加工時間而自動調整其流動性與黏滯性的自調性磨料,並利用磨料流動加工法(Abrasive Flow Machining,AFM)對複雜形狀的微細流道表面進行修整之實驗探討。將由實驗中探討磨料流動加工的製程參數,如磨粒粒度、磨料濃度、擠製壓力與加工時間,對磨料黏滯性及表面粗糙度的影響。同時,亦觀察微細流道之外觀上形狀精度經磨料流動加工修整後的改善效果。
由實驗結果得知,初始磨料具有較高黏滯性。尤其在選用較粗粒徑的磨粒與較高濃度的磨料,並於使用較高擠製壓力的加工條件下,對流道表面粗糙度的改善最為明顯。在隨著加工時間的增加,磨料會呈現極佳的流動性,有利於磨削速度,極適合精修微細流道。能有效地改善流道表面的粗糙度,以獲得高品質的微細流道元件。
摘要(英) Abstract
This study developed a self-modulating abrasive whose viscosity and fluidity can be adjusted processing period. The complex micro channel was fabricated on the stainless steel (SUS304) by using Wire electrical discharge machining (WEDM) and an experiment of employing Abrasive Flow Machining (AFM) was conducted to evaluate the characteristics of various levels of roughness and finishing of the micro channel surface. In the experiment, the parameters of affecting AFM machining including abrasive particle size, concentration, extrusion pressure and machining time were selected to verify the machining quality of the micro channel.
Experimental results reveal that at high viscosity and concentration the surface roughness of abrasive with a coarse particle size is lower than that of abrasive with a fine particle size. Furthermore, the machining quality of the micro channel improves as the extrusion pressure and the machining time increase because there is an increase in the fluidity of the abrasive. Therefore, the self-modulating abrasive-laden media can be used to determine and influence the surface finishing and the precision of the shapes. So we can find the most efficient working conditions to promote industries to consult.
關鍵字(中) ★ 表面粗糙度
★ 線切割放電加工
★ 微細流道
★ 表面精修
★ 磨料流動加工
關鍵字(英) ★ Micro-channel
★ surface roughness
★ Abrasive flow machining (AFM)
★ surface finishing
★ Wire electrical discharge machining (WEDM)
論文目次 中文摘要 I
ABSTRACT II
謝誌 III
總 目 錄 IV
圖 目 錄 VI
表 目 錄 IX
第一章 緒論 1
1-1 研究動機與目的 1
1-2 研究背景 2
1-3 研究方法 4
第二章 基本原理與文獻探討 5
2-1 AFM加工機制 5
2-2 AFM作動方式 6
2-3 AFM磨耗型態 7
2-4 文獻回顧 9
第三章 實驗方法、材料與設備 12
3-1 實驗方式 12
3-2 實驗材料準備 14
3-2-1 黏彈性磨料(Visco-elastic abrasive) 14
3-2-2 工件材料(Work-piece material) 17
3-2-3 模具製作與組立 19
3-2-4 加工溫度之量測 20
3-2-5 磨料黏滯性之量測 20
3-3 實驗設備 22
第四章 結果與討論 30
4-1 線放電加工後之微流道形狀及表面形貌 30
4-1-1 碳化矽磨粒對加工表面的影響 32
4-2 AFM表面精修效果 33
4-2-1 磨粒粒徑及濃度對初始磨料的影響 34
4-2-2 磨料黏滯性與加工參數的關係 35
4-2-3工作溫度與加工參數的關係 39
4-2-4表面粗糙度與加工參數的關係 43
4-3 AFM表面形貌 50
第五章 結論 69
參考文獻 71
參考文獻 參考文獻
[1] B.H.Yan, Y.C.Lin,and F.Y.Huang, 2002, “ Surface modification of Al-Zn-Mg alloy by combined electrical discharge machining with ball burnish machining”, International Journal of Machine Tools and Manufacture, Vol. 42, No.8, pp. 925-934.
[2] A.C.Wang, B.H.Yan, X.T.Lee and F.Y.Huang, 2002, “Use of micro ultrasonic vibration lapping to enhance the precision of micro-holes drilled by micro electro-discharge machining”, International Journal of Machine Tools and Manufacture, Vol. 42, No. 8, pp. 915-923.
[3] T.R. Loveless, R.E. Williams, K.P. Rajurkar, 1994, “A study of the effects of Abrasive-flow finishing on various machined surfaces”, Journal of Materials Processing Technology 47, pp. 133-151.
[4] A.C.Wang, B.H.Yan, X.T.Lee, F.Y.Huang, 2002, “Use of micro ultrasonic vibration lapping to enhance the precision of microholes drilled by micro electro-discharge machining”, International Journal of Machine Tools and Manufacture, Vol. 42, No. 8, pp. 915-923.
[5] http://www.extrudehone.com/
[6] V.K. Jain, 1999, “Simulation of Surface Generated in Abrasive Flow Machining(AFM) Process”, Robotics and Computer Integrated Manufacturing 15, pp. 403-412.
[7] B. Bhushan, 2002, “Introduction to tribology”, by John Wiley and Sons, New York.
[8] V.K. Jain, R.K. Jain, 2001, “Specific energy and temperature determination in abrasive flow machining process”, International Journal of Machine Tools and Manufacture 41, pp. 1689-1704.
[9] Rajendra Kumar Jain, Vijay Kumar Jain, “Simulation of surface generated in abrasive flow machining process”, Robotics and Computer Integrated Manufacture, Vol.15, pp. 403-412.
[10] V.K. Jain, S.G. Adsul, 1999, “Experimental investigations into abrasive flow machining (AFM)”, International Journal of Machine Tools & Manufacture 40, pp. 1003-1021, 2000.
[11] V.K. Jain, C. Ranganatha, and K. Muralidhar, 2001, “Evaluation of rheological properties of medium for AFM process”, Machining Science and Technology, Vol. 5(2), pp. 151-170.
[12] R.K. Jain, V.K. Jain, 2003, “Finite element simulation of abrasive flow machining”, Proc. Instn Mech. Engrs, Vol. 217.
[13] V.K. Gorana, V.K. Jain, G.K. Lal, 2004, “Experimental investigation into cutting forces and active grain density during abrasive flow machining”, International Journal of Machine Tool & Manufacture, Vo l. 44, pp. 201-211, June.
[14] Kimberly L. Petri, Richard E. Billo, and Bopaya Bidanda, 1998, “A neural Network Process Model for abrasive flow machining operations”, Journal of Manufacturing Systems, Vol. 17, No. 1.
[15] R.K. Jain and V.K. Jain, P. K. Kalra, 1999, “Modeling of abrasive flow machining process: a neural network approach”, Wear, Vol. 231, pp. 242-248.
[16] Rajendra Kumar Jain, Vijay Kumar Jain, 2000, “Optimum selection of machining conditions in abrasive flow machining using neural network”, Journal of materials processing technology, Vol. 108, pp. 62-67.
[17] Sehijpal Singh, H.S. Shan, 2002, “Development of magneto abrasive flow machining process”, International Journal of Machine Tool & Manufacture, Vol. 42, pp. 953-959.
[18] Sehijpal Singh, H.S.Shan, Pradeep Kumar, 2002, “Parametric optimization of magnetic-field-assisted abrasive flow machining by the Taguchi method”, Quality and Reliability engineering international, Vol. 18, pp. 273-283.
[19] V.K. Jain, 2004, “Esign and development of the magnetorheological abrasive flow finishing”, International Journal of Machine Tool & Manufacture, Vol. 44, pp. 1019-1029.
[20] 黃忠良, 精密陶瓷加工(硬脆材料的機械加工), 復漢出版社, 民國87年6月。
[21] http://www.chaoshun.com.tw/
指導教授 黃豐元(Fuang-Yuan Huang) 審核日期 2005-7-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明